noise statistics
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 72)

H-INDEX

21
(FIVE YEARS 6)

2021 ◽  
Vol 257 (2) ◽  
pp. 53
Author(s):  
Mikkel N. Lund ◽  
Rasmus Handberg ◽  
Derek L. Buzasi ◽  
Lindsey Carboneau ◽  
Oliver J. Hall ◽  
...  

Abstract Data from the Transiting Exoplanet Survey Satellite (TESS) have produced of the order of one million light curves at cadences of 120 s and especially 1800 s for every ∼27 day observing sector during its two-year nominal mission. These data constitute a treasure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic-noise sources must be performed before any analysis. The TESS Data for Asteroseismology group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics meets expectations and is applicable to a wide range of intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on the websites of the TESS Asteroseismic Science Operations Center and the Mikulski Archive for Space Telescopes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Gregory ◽  
P.-A. Moreau ◽  
S. Mekhail ◽  
O. Wolley ◽  
M. J. Padgett

AbstractQuantum illumination protocols can be implemented to improve imaging performance in the low photon flux regime even in the presence of both background light and sensor noise. However, the extent to which this noise can be rejected is limited by the rate of accidental correlations resulting from the detection of photon or noise events that are not quantum-correlated. Here we present an improved protocol that rejects up to $$\gtrsim 99.9\%$$ ≳ 99.9 % of background light and sensor noise in the low photon flux regime, improving upon our previous results by an order of magnitude. This improvement, which requires no information regarding the scene or noise statistics, will enable extremely low light quantum imaging techniques to be applied in environments previously thought difficult and be an important addition to the development of covert imaging, quantum microscopes, and quantum LIDAR.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012074
Author(s):  
Chen Chen ◽  
Hongren Man ◽  
Xiu Liu

Abstract The noise types of power system intelligent alarm data are complex. When reducing the intelligent alarm data, the profile noise statistics of the noise data are large, resulting in the actual noise reduction value is too small. To solve this problem, a power system intelligent alarm data noise reduction method based on singular value decomposition is designed. The selected normalized decomposition matrix iteratively processes the original matrix, the singular value decomposes the power system alarm data, sets an estimation quantity within the paradigm of the alarm data, controls the noise profile noise statistics, characterizes the noise alarm data structure, uses the SC algorithm to process the cluster basis vectors in the noise data structure, and constructs a repeated iterative convergence process to realize intelligent data noise reduction processing. The original alarm data within a known power system is used as test data, the power system alarm window is set, and the power system alarm data singular values are circled. The data mining-based alarm data noise reduction method, the regularized filter-based alarm data noise reduction method and the designed data noise reduction method are applied to the noise reduction process, and the results show that the designed data noise reduction method has the largest noise value and the best noise reduction effect.


Author(s):  
Xingzhen Bai ◽  
Hongxiang Xu ◽  
Jing Li ◽  
Xuehui Gao ◽  
Feiyu Qin ◽  
...  

This paper is concerned with the problem of personnel localization in the complex coal mine environment with wireless channel fading and unknown noise statistics. Considering the random channel fading caused by signal fluctuation and transmission fault, an improved adaptive unscented Kalman filter (IAUKF) algorithm is proposed. The mean and error covariances of noise are estimated adaptively by adopting the improved Sage–Husa noise estimation method. In order to save energy and improve energy utilization, the multi-sensor clustering is performed to divide the spatial distribution of sensors into multiple clusters. The sensors in the same cluster can communicate with each other to maintain the consistency of estimation. The simulation results show that the IAUKF algorithm is better than extended Kalman filter (EKF), unscented Kalman filter (UKF), and improved unscented Kalman filter (IUKF) algorithms.


2021 ◽  
Author(s):  
Enrico Pomarico ◽  
Cédric Schmidt ◽  
Florian Chays ◽  
David Nguyen ◽  
Arielle Planchette ◽  
...  

Abstract The growth of data throughput in optical microscopy has triggered the extensive use of supervised learning (SL) models on compressed datasets for automated analysis. Investigating the effects of image compression on SL predictions is therefore pivotal to assess their reliability, especially for clinical use.We quantify the statistical distortions induced by compression through the comparison of predictions on compressed data to the raw predictive uncertainty, numerically estimated from the raw noise statistics measured via sensor calibration. Predictions on cell segmentation parameters are altered by up to 15% and more than 10 standard deviations after 16-to-8 bits pixel depth reduction and 10:1 JPEG compression. JPEG formats with higher compression ratios show significantly larger distortions. Interestingly, a recent metrologically accurate algorithm, offering up to 10:1 compression ratio, provides a prediction spread equivalent to that stemming from raw noise. The method described here allows to set a lower bound to the predictive uncertainty of a SL task and can be generalized to determine the statistical distortions originated from a variety of processing pipelines in AI-assisted fields.


2021 ◽  
Vol 13 (19) ◽  
pp. 3855
Author(s):  
Yulun Li ◽  
Chunsheng Li ◽  
Xiaodong Peng ◽  
Shuo Li ◽  
Hongcheng Zeng ◽  
...  

Spaceborne synthetic aperture radar (SAR) can provide ground area monitoring with large coverage. However, achieving a wide observation scope comes at the cost of resolution reduction owing to the trade-off between these parameters in conventional SAR. In low-resolution imaging, the moving target appears unresolved, weakly scattered, and slow moving in the image sequence, which can be generated by the subaperture technique. This article proposes a novel moving target detection method. First, interferometric phase statistics are combined with the generalized likelihood ratio test detector. A pixel tracking strategy is further exploited to determine whether a motion signal is present. These methods rely on the approximation of both clutter and noise statistics using Gaussian distributions in a low-resolution scenario. In addition, the motion signals are imaged with a subpixel offset. The proposed method is primarily validated using four real image sequences from TerraSAR-X data, which represent two types of homogeneous areas. The results reveal that moving targets can be detected in nearby areas using this strategy. The method is compared with the stack averaged coherence change detection and particle-filter-based tracking strategies.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 246
Author(s):  
Jiaolong Wang ◽  
Zeyang Chen

Motivated by the rapid progress of aerospace and robotics engineering, the navigation and control systems on matrix Lie groups have been actively studied in recent years. For rigid targets, the attitude estimation problem is a benchmark one with its states defined as rotation matrices on Lie groups. Based on the invariance properties of symmetry groups, the invariant Kalman filter (IKF) has been developed by researchers for matrix Lie group systems; however, the limitation of the IKF is that its estimation performance is prone to be degraded if the given knowledge of the noise statistics is not accurate. For the symmetry Lie group attitude estimation problem, this paper proposes a new variational Bayesian iteration-based adaptive invariant Kalman filter (VBIKF). In the proposed VBIKF, the a priori error covariance is not propagated by the conventional steps but directly calibrated in an iterative manner based on the posterior sequences. The main advantage of the VBIKF is that the statistics parameter of the system process noise is no longer required and so the IKF’s hard dependency on accurate process noise statistics can be reduced significantly. The mathematical foundation for the new VBIKF is presented and its superior performance in adaptability and simplicity is further demonstrated by numerical simulations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Niloyendu Roy ◽  
Nathan Leroux ◽  
A. K. Sood ◽  
Rajesh Ganapathy

AbstractColloidal heat engines are paradigmatic models to understand the conversion of heat into work in a noisy environment - a domain where biological and synthetic nano/micro machines function. While the operation of these engines across thermal baths is well-understood, how they function across baths with noise statistics that is non-Gaussian and also lacks memory, the simplest departure from the thermal case, remains unclear. Here we quantified the performance of a colloidal Stirling engine operating between an engineered memoryless non-Gaussian bath and a Gaussian one. In the quasistatic limit, the non-Gaussian engine functioned like a thermal one as predicted by theory. On increasing the operating speed, due to the nature of noise statistics, the onset of irreversibility for the non-Gaussian engine preceded its thermal counterpart and thus shifted the operating speed at which power is maximum. The performance of nano/micro machines can be tuned by altering only the nature of reservoir noise statistics.


Author(s):  
Huangxing Lin ◽  
Yihong Zhuang ◽  
Yue Huang ◽  
Xinghao Ding ◽  
Xiaoqing Liu ◽  
...  

In many image denoising tasks, the difficulty of collecting noisy/clean image pairs limits the application of supervised CNNs. We consider such a case in which paired data and noise statistics are not accessible, but unpaired noisy and clean images are easy to collect. To form the necessary supervision, our strategy is to extract the noise from the noisy image to synthesize new data. To ease the interference of the image background, we use a noise removal module to aid noise extraction. The noise removal module first roughly removes noise from the noisy image, which is equivalent to excluding much background information. A noise approximation module can therefore easily extract a new noise map from the removed noise to match the gradient of the noisy input. This noise map is added to a random clean image to synthesize a new data pair, which is then fed back to the noise removal module to correct the noise removal process. These two modules cooperate to extract noise finely. After convergence, the noise removal module can remove noise without damaging other background details, so we use it as our final denoising network. Experiments show that the denoising performance of the proposed method is competitive with other supervised CNNs.


Sign in / Sign up

Export Citation Format

Share Document