dynamic target
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 74)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Oussama Hamed ◽  
Mohamed Hamlich ◽  
Mohamed Ennaji

The cooperation and coordination in multi-robot systems is a popular topic in the field of robotics and artificial intelligence, thanks to its important role in solving problems that are better solved by several robots compared to a single robot. Cooperative hunting is one of the important problems that exist in many areas such as military and industry, requiring cooperation between robots in order to accomplish the hunting process effectively. This paper proposed a cooperative hunting strategy for a multi-robot system based on wolf swarm algorithm (WSA) and artificial potential field (APF) in order to hunt by several robots a dynamic target whose behavior is unexpected. The formation of the robots within the multi-robot system contains three types of roles: the leader, the follower, and the antagonist. Each role is characterized by a different cognitive behavior. The robots arrive at the hunting point accurately and rapidly while avoiding static and dynamic obstacles through the artificial potential field algorithm to hunt the moving target. Simulation results are given in this paper to demonstrate the validity and the effectiveness of the proposed strategy.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 526
Author(s):  
Jiuling Liao ◽  
Lina Liu ◽  
Tingai Chen ◽  
Xianyuan Xia ◽  
Hui Li ◽  
...  

Structured illumination microscopy (SIM) provides wide-field optical sectioning in the focal plane by modulating the imaging information using fringe pattern illumination. For generating the fringe pattern illumination, a digital micro-mirror device (DMD) is commonly used due to its flexibility and fast refresh rate. However, the benefit of different pattern generation, for example, the two-beam interference mode and the three-beam interference mode, has not been clearly investigated. In this study, we systematically analyze the optical sectioning provided by the two-beam inference mode and the three-beam interference mode of DMD. The theoretical analysis and imaging results show that the two-beam interference mode is suitable for fast imaging of the superficial dynamic target due to reduced number of phase shifts needed to form the image, and the three-beam interference mode is ideal for imaging three-dimensional volume due to its superior optical sectioning by the improved modulation of the illumination patterns. These results, we believe, will provide better guidance for the use of DMD for SIM imaging and also for the choice of beam patterns in SIM application in the future.


2021 ◽  
Vol 11 (22) ◽  
pp. 10595
Author(s):  
Wenlong Zhao ◽  
Zhijun Meng ◽  
Kaipeng Wang ◽  
Jiahui Zhang ◽  
Shaoze Lu

Active tracking control is essential for UAVs to perform autonomous operations in GPS-denied environments. In the active tracking task, UAVs take high-dimensional raw images as input and execute motor actions to actively follow the dynamic target. Most research focuses on three-stage methods, which entail perception first, followed by high-level decision-making based on extracted spatial information of the dynamic target, and then UAV movement control, using a low-level dynamic controller. Perception methods based on deep neural networks are powerful but require considerable effort for manual ground truth labeling. Instead, we unify the perception and decision-making stages using a high-level controller and then leverage deep reinforcement learning to learn the mapping from raw images to the high-level action commands in the V-REP-based environment, where simulation data are infinite and inexpensive. This end-to-end method also has the advantages of a small parameter size and reduced effort requirements for parameter turning in the decision-making stage. The high-level controller, which has a novel architecture, explicitly encodes the spatial and temporal features of the dynamic target. Auxiliary segmentation and motion-in-depth losses are introduced to generate denser training signals for the high-level controller’s fast and stable training. The high-level controller and a conventional low-level PID controller constitute our hierarchical active tracking control framework for the UAVs’ active tracking task. Simulation experiments show that our controller trained with several augmentation techniques sufficiently generalizes dynamic targets with random appearances and velocities, and achieves significantly better performance, compared with three-stage methods.


2021 ◽  
Vol 11 (21) ◽  
pp. 10270
Author(s):  
Yong Tao ◽  
Fan Ren ◽  
He Gao ◽  
Tianmiao Wang ◽  
Shan Jiang ◽  
...  

Tracking and grasping a moving target is currently a challenging topic in the field of robotics. The current visual servo grasping method is still inadequate, as the real-time performance and robustness of target tracking both need to be improved. A target tracking method is proposed based on improved geometric particle filtering (IGPF). Following the geometric particle filtering (GPF) tracking framework, affine groups are proposed as state particles. Resampling is improved by incorporating an improved conventional Gaussian resampling algorithm. It addresses the problem of particle diversity loss and improves tracking performance. Additionally, the OTB2015 dataset and typical evaluation indicators in target tracking are adopted. Comparative experiments are performed using PF, GPF and the proposed IGPF algorithm. A dynamic target tracking and grasping method for the robot is proposed. It combines an improved Gaussian resampling particle filter algorithm based on affine groups and the positional visual servo control of the robot. Finally, the robot conducts simulation and experiments on capturing dynamic targets in the simulation environment and actual environment. It verifies the effectiveness of the method proposed in this paper.


2021 ◽  
pp. 4213-4236
Author(s):  
Qijie Chen ◽  
Zhicai Xiao ◽  
Yuqiang Jin ◽  
Taoyu Wang

Machines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 198
Author(s):  
Zhuo Wang ◽  
Zhenyu Wu ◽  
Tao Wang ◽  
Bo Zhang

In order to carry out various detections of system indicators during the research and development phase of infrared guided missiles, the article first analyzes several main design schemes of the infrared guided missile detection simulator and finds that it has the disadvantages of difficult processing technology and low detection accuracy. The overall structure of the detection device was designed, including the design of the rotation and swing mechanism, lens mechanism, optical system and control system. The optical system error analysis is performed on the infrared guided missile detection simulator. The position of the receiving light source is obtained by analyzing the mechanism characteristics of the detection simulator and the kinematics model of the device. The phase difference analysis of the eccentricity and tilt system is obtained. The image quality was evaluated by the optical transfer function (MTF), and the system error was found to meet the requirements of imaging quality. The experiments show that the simulation of 1.7~4.9 um medium wave infrared dynamic target signals provides an accurate and reasonable experimental environment for the missile and the verification of the light source target and meets the experimental requirements.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1931
Author(s):  
Zi-Hao Wang ◽  
Wen-Jie Chen ◽  
Kai-Yu Qin

In many applications of airborne visual techniques for unmanned aerial vehicles (UAVs), lightweight sensors and efficient visual positioning and tracking algorithms are essential in a GNSS-denied environment. Meanwhile, many tasks require the ability of recognition, localization, avoiding, or flying pass through these dynamic obstacles. In this paper, for a small UAV equipped with a lightweight monocular sensor, a single-frame parallel-features positioning method (SPPM) is proposed and verified for a real-time dynamic target tracking and ingressing problem. The solution is featured with systematic modeling of the geometric characteristics of moving targets, and the introduction of numeric iteration algorithms to estimate the geometric center of moving targets. The geometric constraint relationships of the target feature points are modeled as non-linear equations for scale estimation. Experiments show that the root mean square error percentage of static target tracking is less than 1.03% and the root mean square error of dynamic target tracking is less than 7.92 cm. Comprehensive indoor flight experiments are conducted to show the real-time convergence of the algorithm, the effectiveness of the solution in locating and tracking a moving target, and the excellent robustness to measurement noises.


Sign in / Sign up

Export Citation Format

Share Document