Investigation and Assessment of the Impacts of Reverse Power Flow on Power System Network Loading under High Penetration of Wind Energy

Author(s):  
Ereola J. Aladesanmi ◽  
David G. Dorrell
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Aida Fazliana Abdul Kadir ◽  
Tamer Khatib ◽  
Wilfried Elmenreich

This paper is an overview of some of the main issues in photovoltaic based distributed generation (PVDG). A discussion of the harmonic distortion produced by PVDG units is presented. The maximum permissible penetration level of PVDG in distribution system is also considered. The general procedures of optimal planning for PVDG placement and sizing are also explained in this paper. The result of this review shows that there are different challenges for integrating PVDG in the power systems. One of these challenges is integrated system reliability whereas the amount of power produced by renewable energy source is consistent. Thus, the high penetration of PVDG into grid can decrease the reliability of the power system network. On the other hand, power quality is considered one of the challenges of PVDG whereas the high penetration of PVDGs can lead to more harmonic propagation into the power system network. In addition to that, voltage fluctuation of the integrated PVDG and reverse power flow are two important challenges to this technology. Finally, protection of power system with integrated PVDG is one of the most critical challenges to this technology as the current protection schemes are designed for unidirectional not bidirectional power flow pattern.


2002 ◽  
Vol 22 (9) ◽  
pp. 59-59
Author(s):  
Juan, M. Rodriguez ◽  
Jose, L. Fernandez ◽  
Domingo Beato ◽  
Ramon Iturbe ◽  
Julio Usaola ◽  
...  

Author(s):  
Karmila Kamil ◽  
Muhammad Amirul Ashraf Ab Rahman ◽  
Chong Kok Hen ◽  
Halimatun Hashim ◽  
Mohd Helmi Mansor

Voltage stability means the ability of the power system network to maintain steady-state voltage value at all buses in the system under normal condition and after being subjected to a disturbance. This research highlights the effect of solar photovoltaic (PV) as the subject of disturbance to the network system as this kind of energy source has emerged towards higher level of integration into the national grid. High penetration of solar PV into the grid may cause several issues of stability and security to the system particularly effecting the normal voltage and line overloading. This research is focused on the simulation of power flow to study the transmission network behavior with and without the solar PV interconnection. To accomplish the research objectives, the network system will be modelled in a software known as Power System Simulator for Engineering (PSSE). The simulation result will be discussed and analyzed using Voltage Stability Indices (VSI) to prove and strengthen the theory behind the literature review.


2021 ◽  
Author(s):  
◽  
Musawenkosi Lethumcebo Thanduxolo Zulu

Rural electrification has become a very important means of improving the standard of living of rural dwellers, a process which also helps in the electrification of remote and isolated regions. Presently, the electrification of such regions can be achieved through the use of renewable energy. The use of renewable energy sources such as PV and wind energy is gaining popularity as the solution to achieving the electrification of rural areas, such as the use of the microgrid, which can be in the form of an AC or DC microgrid. The DC microgrid can be used to connect distributed energy resources and its energy storage is considered to be an economical system to meet consumer demand due to its benefits, namely environmental friendliness, reliability and good performance in load distribution. The power system may experience many faults when transferring power via overhead transmission lines to the load. When these faults occur, it is important to detect the location and isolate the part that had experienced the fault quickly, without de-activating the whole microgrid. The main aim of this study was to conduct a power flow and faults analysis on a hybrid DC microgrid model with battery storage. The hybrid energy sources for the DC microgrid are the PV system and wind energy system. Firstly, this research conducted a power flow analysis for the hybrid DC microgrid. Secondly, a fault analysis was carried out on the system and both the power flow and the fault analysis were formulated through implementation in a MATLAB/Simulink environment under various conditions in order to ascertain the stability and reliability of the system. Various MATLAB/Simulations were carried out, including the DC single-line-ground fault and DC line-line fault and are analysed in a designed hybrid DC microgrid power system. The results showed that DC line-to-line and DC line-to-ground faults lead to the imbalance of DC voltage, which is difficult to re-balance and stabilize in the system after the existence of these faults. When these faults occurred in the system, there was immense fluctuation and unsteadiness of output load power delivered to consumers. Moreover, wind-generated power on the generation side was severely affected. Based on the results and analysis of those results, the hybrid DC microgrid is seen as a satisfactory and optimum concept for the generation and transmission of power for rural and isolated area electrification, i.e. it can provide power to remote areas that cannot be reached by the national grid. The study revealed, based on the analysis of results, that it has an effective response under fault conditions. Results for a hybrid DC microgrid revealed that high quality of power is experienced in load distribution. Also based on the results, when DC faults occurs there is disturbance to output.


Sign in / Sign up

Export Citation Format

Share Document