Gripping Force Modeling of a Binding Hand

Author(s):  
Ikumi Okada ◽  
Zhongkui Wang ◽  
Shinichi Hirai
2021 ◽  
Vol 33 (3) ◽  
pp. 037115
Author(s):  
Di Chen ◽  
Kengo Asada ◽  
Satoshi Sekimoto ◽  
Kozo Fujii ◽  
Hiroyuki Nishida

2021 ◽  
Vol 33 (5) ◽  
pp. 053107
Author(s):  
Susanne K. Kugler ◽  
Abrahán Bechara ◽  
Hector Perez ◽  
Camilo Cruz ◽  
Armin Kech ◽  
...  

Author(s):  
Ashwani Pratap ◽  
Karali Patra

Abstract This work presents an analytical cutting force modeling for micro-slot grinding. Contribution of the work lies in the consideration of both primary and secondary tool surface interactions with the work surface as compared to the previous works where only primary tool surface interaction was considered during cutting force modeling. Tool secondary surface interaction with workpiece is divided into two parts: cutting/ ploughing by abrasive grits present in exterior margin of the secondary tool surface and sliding/adhesion by abrasive grits in the inner margins of the secondary tool surface. Orthogonal cutting force model and indentation based fracture model is considered for cutting by both the abrasives of primary tool surface and the abrasives of exterior margin on the secondary surface. Asperity level sliding and adhesion model is adopted to solve the interaction between the workpiece and the interior margin abrasives of secondary tool surface. Experimental measurement of polycrystalline diamond tool surface topography is carried out and surface data is processed with image processing tools to determine the tool surface statistics viz., cutting edge density, grit height distribution and abrasive grit geometrical measures. Micro-slot grinding experiments are carried out on BK7 glass at varying feed rate and axial depths of cut to validate the simulated cutting forces. Simulated cutting forces considering both primary and secondary tool surface interactions are found to be much closer to the experimental cutting forces as compared to the simulated cutting forces considering only primary tool surface interaction.


Author(s):  
Kai Shi ◽  
Huayi Zheng ◽  
Jun Li ◽  
Gang Bao

This article described a novel pneumatic soft joint used to make articulated soft fingers. This soft joint was designed by improving the basic structure of the fast pneumatic network. The joint was made of high modulus E630 silicon, which can increase the reverse exhaust speed through its high structural elasticity. Aramid fabric was used to restrain the non-working direction of joints to reduce ineffective expansion, thereby reducing air consumption. The kinematics and statics model of the joint was established by the piecewise constant curvature (PCC) method, and the model was proved to be effective. The silicone staging pouring process was used in the manufacture of joints and fingers, which can achieve high-quality product rates. A soft finger actuator composed of three soft joints was designed and manufactured, whose length was 1.3 times the human finger. The finger can nimbly achieve the target motion, and the gripping force of the fingertip can reach 7.1N. The articulated soft finger actuator has applications in soft dextrous hands and soft gripper.


2018 ◽  
Author(s):  
Akhmad Faizin ◽  
Arif Wahjudi ◽  
I. Made Londen Batan ◽  
Agus Sigit Pramono

2003 ◽  
Vol 18 (4) ◽  
pp. 207-212 ◽  
Author(s):  
Shin MURATA ◽  
Tatsuo KUTSUNA

Sign in / Sign up

Export Citation Format

Share Document