tool wear
Recently Published Documents


TOTAL DOCUMENTS

4591
(FIVE YEARS 1255)

H-INDEX

86
(FIVE YEARS 17)

2022 ◽  
Author(s):  
Yifan Li ◽  
Yongyong Xiang ◽  
Baisong Pan ◽  
Luojie Shi

Abstract Accurate cutting tool remaining useful life (RUL) prediction is of significance to guarantee the cutting quality and minimize the production cost. Recently, physics-based and data-driven methods have been widely used in the tool RUL prediction. The physics-based approaches may not accurately describe the time-varying wear process due to a lack of knowledge for underlying physics and simplifications involved in physical models, while the data-driven methods may be easily affected by the quantity and quality of data. To overcome the drawbacks of these two approaches, a hybrid prognostics framework considering tool wear state is developed to achieve an accurate prediction. Firstly, the mapping relationship between the sensor signal and tool wear is established by support vector regression (SVR). Then, the tool wear statuses are recognized by support vector machine (SVM) and the results are put into a Bayesian framework as prior information. Thirdly, based on the constructed Bayesian framework, parameters of the tool wear model are updated iteratively by the sliding time window and particle filter algorithm. Finally, the tool wear state space and RUL can be predicted accordingly using the updating tool wear model. The validity of the proposed method is demonstrated by a high-speed machine tool experiment. The results show that the presented approach can effectively reduce the uncertainty of tool wear state estimation and improve the accuracy of RUL prediction.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsana Aqilah Ahmad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron

Purpose The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid. Design/methodology/approach The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism. Findings Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool Originality/value A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.


Author(s):  
Kourosh Tatar ◽  
Inge Svenningsson

AbstractThe tool geometry is generally of great significance in metal cutting performance. The response surface method was used to optimize chamfer geometry to achieve reliable and minimum tool wear in slot milling. Models were developed for edge chipping, rake wear, and flank wear. The adequacy of the models was verified using analysis of variance at a 95% confidence level. Each response was optimized individually, and the multiple responses were optimized simultaneously using the desirability function approach. The Monte Carlo simulation method was applied to tolerance analysis. All milling tests were conducted at dry conditions; the chamfer width and the chamfer angle varied between 0.1 and 0.3 mm, and 10 and 30°, respectively. Optimal chamfer geometry for minimizing chipping and rake wear was small chamfer width and chamfer angle. The flank wear reached the minimum value for the tool with 0.18 mm chamfer width and 10° chamfer angle. The obtained composite model predicted good edge strength and minimum overall wear when the chamfer was 0.1 mm wide at a 10° angle. Thermal cracks were observed on the tools. They were small on the edges with the finest and least negative chamfer but were more significant on the more negative and greater chamfer. A great chamfer width and chamfer angle also resulted in insufficient chip evacuation. The results show how the edge geometry affects the tool’s reliability and wear and may help manufacturers minimize tool cost and downtime.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 524
Author(s):  
Shalina Sheik Muhamad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron ◽  
Hafizal Yazid

Cryogenic technique is the use of a cryogenic medium as a coolant in machining operations. Commonly used cryogens are liquid nitrogen (LN2) and carbon dioxide (CO2) because of their low cost and non-harmful environmental impact. In this study, the effects of machining conditions and parameters on the wear mechanism were analysed in the milling process of AISI 4340 steel (32 HRC) under cryogenic conditions using a multilayer coated carbide cutting tool (TiAlN/AlCrN). A field emission scanning electron microscope with energy-dispersive X-ray analysis was used to examine the wear mechanisms comprehensively. At low machining parameters, abrasion and adhesion were the major wear mechanisms which occurred on the rake face. Machining at high machining parameters caused the removal of the coating material on the rake face due to the high temperature and cutting force generated during the cutting process. In addition, it was found that continuously adhered material on the rake face would lead to crater wear. Furthermore, the phenomenon of oxidation was also observed when machining at high cutting speed, which resulted in diffusion wear and increase in the crater wear. Based on the relationship between the cutting force and cutting temperature, it can be concluded that these machining outputs are significant in affecting the progression of tool wear rate, and tool wear mechanism in the machining of AISI 4340 alloy steel.


Sign in / Sign up

Export Citation Format

Share Document