Microstructural studies on fire-through front contact metallization of Si solar cells

Author(s):  
Suhaila Sepeai ◽  
M. Y. Sulaiman ◽  
Saleem H. Zaidi ◽  
Kamaruzzaman Sopian
Author(s):  
Imteyaz Ahmad ◽  
Jeremy D Fields ◽  
Vanessa L Pool ◽  
Jiafan Yu ◽  
Douglas Van Campen ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 5 (8-9) ◽  
pp. 431-439
Author(s):  
Keming Ren ◽  
Abasifreke Ebong

ABSTRACTIn a bid to further reduce the cost of the front Ag contact metallization in Si solar cells, Cu is the potential alternative to replace the Ag in the Ag paste. However, this requires an understanding of the contact mechanism of screen-printable Ag/Cu paste in Si solar cell through rapid thermal process. The pastes with different weight percent of Cu (0 wt%, 25 wt% and 50 wt%) were used and the Voc of the cells was reduced with the increasing weight percent of Cu. This is because the presence of Cu in the paste changed the microstructure of the Ag/Cu/Si contact through Cu doping of the glass frits and hence increasing the Tg of the glass. The increased Tg of the glass impeded the uniform spreading of the molten glass and resulted in poor wetting and etching of the SiNx, which impacted the contact as evident in ideality factor of less than unity. This also led to the formation of agglomerated Ag crystallites with features of 700 nm in length and 200 nm in depth, which is close to the p-n junction, of which depth is ∼300 nm. However, the interface glass layer acted as an effective diffusion barrier layer to prevent Cu atoms from diffusing into the Si emitter, which is quite remarkable for Cu not to diffuse into silicon at high temperature. Further investigation of the Ag/Cu contacts with the conductive AFM in conjunction with the SEM and STEM analyses revealed that the growth of Ag crystallites in the Si emitter is responsible for carrier conduction the gridlines as with the pure Ag paste.


1981 ◽  
Vol 42 (C4) ◽  
pp. C4-1155-C4-1164 ◽  
Author(s):  
Y. Kuwano ◽  
M. Ohnishi
Keyword(s):  

Author(s):  
Vishal Mehta ◽  
Bhushan Sopori ◽  
Przemyslaw Rupnowski ◽  
Helio Moutinho ◽  
Aziz Shaikh ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 1283-1289
Author(s):  
George C. Wilkes ◽  
Ajay D. Upadhyaya ◽  
Ajeet Rohatgi ◽  
Mool C. Gupta

Author(s):  
H. Hashiguchi ◽  
T. Tachibana ◽  
M. Aoki ◽  
T. Kojima ◽  
Y. Ohshita ◽  
...  
Keyword(s):  

Solar Energy ◽  
2021 ◽  
Vol 220 ◽  
pp. 211-216
Author(s):  
H.P. Yin ◽  
W.S. Tang ◽  
J.B. Zhang ◽  
W. Shan ◽  
X.M. Huang ◽  
...  

Author(s):  
Daniel Ourinson ◽  
Gernot Emanuel ◽  
Kaveh Rahmanpour ◽  
Felix Ogiewa ◽  
Harald Muller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document