effective diffusion
Recently Published Documents


TOTAL DOCUMENTS

1000
(FIVE YEARS 227)

H-INDEX

45
(FIVE YEARS 6)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 33
Author(s):  
Valerie Hietsch ◽  
Phil Ligrani ◽  
Mengying Su

We considered effective diffusion, characterized by magnitudes of effective diffusion coefficients, in order to quantify mass transport due to the onset and development of elastic instabilities. Effective diffusion coefficient magnitudes were determined using different analytic approaches, as they were applied to tracked visualizations of fluorescein dye front variations, as circumferential advection was imposed upon a flow environment produced using a rotating Couette flow arrangement. Effective diffusion coefficient results were provided for a range of flow shear rates, which were produced using different Couette flow rotation speeds and two different flow environment fluid depths. To visualize the flow behavior within the rotating Couette flow environment, minute amounts of fluorescein dye were injected into the center of the flow container using a syringe pump. This dye was then redistributed within the flow by radial diffusion only when no disk rotation was used, and by radial diffusion and by circumferential advection when disk rotation was present. Associated effective diffusion coefficient values, for the latter arrangement, were compared to coefficients values with no disk rotation, which were due to molecular diffusion alone, in order to quantify enhancements due to elastic instabilities. Experiments were conducted using viscoelastic fluids, which were based on a 65% sucrose solution, with different polymer concentrations ranging from 0 ppm to 300 ppm. Associated Reynolds numbers based on the fluid depth and radially averaged maximum flow velocity ranged from 0.00 to 0.5. The resulting effective diffusion coefficient values for different flow shear rates and polymer concentrations quantified the onset of elastic instabilities, as well as significant and dramatic changes to local mass transport magnitudes, which are associated with the further development of elastic instabilities.


2022 ◽  
Author(s):  
Ali Sehpar Shikoh ◽  
Gi Sang Choi ◽  
Sungmin Hong ◽  
Kwang Seob Jeong ◽  
Jaekyun Kim

Abstract We report that high absorption PbSe colloidal quantum dots (QDs) having a peak absorbance beyond 2100 nm were synthesized and incorporated into InSnZnO (ITZO) channel layer-based thin film transistors (TFTs). It was intended that PbSe QDs with proportionally less photocurrent modulation can be remedied by semiconducting and low off-current ITZO-based TFT configuration. Multiple deposition scheme of PbSe QDs on ITZO metal oxide thin film gave rise to nearly linear increase of film thickness with acceptably uniform and smooth surface (less than 10 nm). Hybrid PbSe/ITZO thin film-based phototransistor exhibited the best performance of near infrared (NIR) detection in terms of response time, sensitivity and detectivity as high as 0.38 s, 3.91 and 4.55 × 107 Jones at room temperature, respectively. This is indebted mainly from the effective diffusion of photogenerated carrier from the PbSe surface to ITZO channel layer as well as from the conduction band alignment between them. Therefore, we believe that our hybrid PbSe/ITZO material platform can be widely used to be in favour of incorporation of solution-processed colloidal light absorbing material into the high-performance metal oxide thin film transistor configuration.


2022 ◽  
Vol 9 ◽  
Author(s):  
Runwei Qiao ◽  
Fengxia Li ◽  
Shicheng Zhang ◽  
Haibo Wang ◽  
Fei Wang ◽  
...  

CO2-based fracturing is widely introduced to stimulate shale oil reservoirs for its multiple advantages. However, the range of CO2 entering the matrix around fractures and CO2-oil replacement capacity between matrix and fractures cannot be fully explained. To address this issue, a radial constant volume diffusion experiment on shale cores was designed in this study, and the pressure drop curve history was matched through numerical model to determine the composition effective diffusion coefficient. A field-scale numerical model was established, in which a series of certain grids were used to explicitly characterize fracture and quantify the prosess of CO2 mass transfer and oil replacement. Based on the field-scale numerical model, the process of shut-in, flow back, and oil production was simulated. The distribution of CO2 in fractured shale oil formation and its impact on crude oil during shut-in stage and flow back stage were investigated. This study concludes that CO2 gradually exchanges the oil in matrix into fractures and improve the fluidity of oil in matrix until the component concentrations of the whole reservoir reaches equilibrium during the shut-in process. Finally, about 30∼35 mole % of CO2 in fractures exchanges for oil in matrix. The range of CO2 entering the matrix around fractures is only 1.5 m, and oil in matrix beyond this distance will not be affected by CO2. During the process of flow back and production, the CO2 in fracture flows back quickly, but the CO2 in matrix is keeping dissolved in oil and will not be quickly produced. It is conclued that the longest possible shut-in time is conducive to making full use of the CO2-EOR mechanism in fractured shale oil reservoirs. However, due to the pursuit of economic value, a shut-in time of 10 days is the more suitable choice. This work can provide a better understanding of CO2 mass transfer mechanism in fractured shale oil reservoirs. It also provides a reference for the evaluation of the shut-in time and production management after CO2 fracturing.


2021 ◽  
Vol 413 ◽  
pp. 84-90
Author(s):  
Daniil Bograchev

In the presented work on chronoamperometry, the Cottrell model has been generalized by taking into account a thin porosity layer covering the surface of the electrode and Tafel kinetics of an electrode reaction. The effective diffusion coefficient inside a porosity layer is calculated by Bruggeman’s law. It is shown that in the quasi-stationary approximation of diffusion inside a thin porous layer, the chronoamperometry problem can be solved analytically. The obtained solution has been compared with the results of direct numerical simulations and a good agreement is shown. Limiting cases of the solution related to low and high porosity are considered.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuzhen Sun ◽  
Hui Zhang ◽  
Rong Hua ◽  
Mingbiao Luo ◽  
Chuan-Pin Lee ◽  
...  

Abstract Tamusu area is the primary pre-selection site of clayrock disposal repository for high-level radioactive waste (HLW) in China. However, the research on the migration behavior of nuclides in Tamusu clayrock is still in its infancy. For the first time in laboratory, the diffusion behavior of Re(VII) in Tamusu clayrock core was studied by means of through-diffusion method. The effects of pH, ionic strength and humic acid on the diffusion behavior of Re(VII) in clayrock were studied. The effective diffusion coefficient, apparent diffusion coefficient and rock capacity factor value were obtained. All the experimental conditions of Re(VII) diffusion in Tamusu clayrock are compared with other geological samples under the same conditions in literature data. The diffusion mechanism of radionuclide in Tamusu clay is discussed, which can provide experimental data for site selection and safety assessment of high-level radioactive waste repository in China. The experimental results showed an effective application and reference for the countries disposed HLW in mudrocks or clayrocks, such as France, Belgium etc. in Europe. Moreover, this research can provide the original data support for the metallogenic regularity and prospecting prognosis of rare element rhenium in different geological environments.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7318
Author(s):  
Mohamed Bizi ◽  
Fatima-Ezzahra EL Bachra

The transport of carbamazepine, ciprofloxacin and sulfamethoxazole in the different pores of activated carbon in an aqueous solution is a dynamic process that is entirely dependent on the intrinsic parameters of these molecules and of the adsorbent. The macroscopic processes that take place are analyzed by interfacial diffusion and reaction models. Modeling of the experimental kinetic curves obtained following batch treatment of each solute at 2 µg/L in tap water showed (i) that the transport and sorption rates were controlled by external diffusion and intraparticle diffusion and (ii) that the effective diffusion coefficient for each solute, with the surface and pore diffusion coefficients, were linked by a linear relationship. A statistical analysis of the experimental data established correlations between the diffusional parameters and some geometrical parameters of these three molecules. Given the major discontinuities observed in the adsorption kinetics, the modeling of the experimental data required the use of traditional kinetic models, as well as a new kinetic model composed of the pseudo first or second order model and a sigmoidal expression. The predictions of this model were excellent. The solubility of each molecule below 60 °C was formulated by an empirical expression.


Author(s):  
ATHIRA A R ◽  
B N Bessy Raj ◽  
xavier t s

Abstract Metal-organic frameworks (MOF) are well-known for their high surface area and porous nature. However, their use in energy storage applications remains limited by their poor electrical conductivity. Here, microwave-induced polyindole modified cobalt MOF composite (CoMP) was constructed to address the poor conductivity of cobalt MOF and improve their applicability in energy storage. The electrochemical performance of the CoMP was investigated in 3 M KOH electrolyte. Deliberate mixing of PIn with Cobalt MOF resulted in effective diffusion of PIn nanospheres into the MOF matrix. With the reticulate porous morphology and large surface area, the CoMP electrode could facilitate easy ion transport at the electrode-electrolyte interface and achieve a maximum specific capacitance as high as 432.6 mF cm-2 at 10 mV s-1 surpassing polyindole (284.5 mF cm-2) and cobalt MOF (235.5 mF cm-2). Also, the CoMP symmetric supercapacitor delivered high specific energy (8.2 W h cm-2) and specific power (622 W cm-2) at 2 mA cm-2 with 93% capacitance retention after 5000 GCD cycles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio Cobarrubia ◽  
Jarod Tall ◽  
Austin Crispin-Smith ◽  
Antoni Luque

Mucus is a complex fluid that coats multiple organs in animals. Various physicochemical properties can alter the diffusion of microscopic particles in mucus, impacting drug delivery, virus infection, and disease development. The simultaneous effect of these physicochemical properties in particle diffusion, however, remains elusive. Here, we analyzed 106 published experiments to identify the most dominant factors controlling particle diffusion in mucus. The effective diffusion—defined using a one-second sampling time window across experiments—spanned seven orders of magnitude, from 10–5 to 102 μm2/s. Univariate and multivariate statistical analyses identified the anomalous exponent (the logarithmic slope of the mean-squared displacement) as the strongest predictor of effective diffusion, revealing an exponential relationship that explained 89% of the variance. A theoretical scaling analysis revealed that a stronger correlation of the anomalous exponent over the generalized diffusion constant occurs for sampling times two orders of magnitude larger than the characteristic molecular (or local) displacement time. This result predicts that at these timescales, the molecular properties controlling the anomalous exponent, like particle–mucus unbinding times or the particle to mesh size ratio, would be the most relevant physicochemical factors involved in passive microrheology of particles in mucus. Our findings contrast with the fact that only one-third of the studies measured the anomalous exponent, and most experiments did not report the associated molecular properties predicted to dominate the motion of particles in mucus. The theoretical foundation of our work can be extrapolated to other systems, providing a guide to identify dominant molecular mechanisms regulating the mobility of particles in mucus and other polymeric fluids.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7056
Author(s):  
Chuan-Pin Lee ◽  
Yanqin Hu ◽  
Dongyang Chen ◽  
Enhui Wu ◽  
Ziteng Wang ◽  
...  

An accurate and effective method combining ion chromatography (IC) and inductively coupled plasma optical emission spectrometry (ICP-OES) was applied in this work to qualitatively and quantitatively analyze individual and co-existing iodide (I−) and iodate (IO3−) at various concentrations. More specifically, a very strong linear relationship for the peak area for the co-existing I− and IO3− ions was reached, and a high resolution value between two peaks was observed, which proves the effectiveness of our combined IC-ICP-OES method at analyzing iodine species. We observed lower accessible porosity for the diffusion of both I− and IO3− in samples of bentonite clay using IC-ICP-OES detection methods, where the effective diffusion coefficient varied based on the anion exclusion effect and the size of the diffusing molecules. In fact, the distribution coefficients (Kd) of both I− and IO3− were close to 0, which indicates that there was no adsorption on bentonite clay. This finding can be explained by the fact that no change in speciation took place during the diffusion of I− and IO3− ions in bentonite clay. Our IC-ICP-OES method can be used to estimate the diffusion coefficients of various iodine species in natural environments.


Sign in / Sign up

Export Citation Format

Share Document