Four-Component Model for Dynamic Verification of Process-Oriented Control Software for Cyber-Physical Systems

Author(s):  
Tatiana Liakh ◽  
Igor Anureev ◽  
Andrei Rozov ◽  
Natalia Garanina ◽  
Vladimir Zyubin
2016 ◽  
Vol 13 (1) ◽  
pp. 40-52 ◽  
Author(s):  
Peter Herrmann ◽  
Jan Olaf Blech ◽  
Fenglin Han ◽  
Heinz Schmidt

A method preserving cyber-physical systems to operate safely in a joint physical space is presented. It comprises the model-based development of the control software and simulators for the continuous physical environment as well as proving the models for spatial and real-time properties. The corresponding toolchain is based on the model-based engineering tool Reactive Blocks and the spatial model checker BeSpaceD. The real-time constraints to be kept by the controller are proven using the model checker UPPAAL.


Author(s):  
Peter Herrmann ◽  
Jan Olaf Blech ◽  
Fenglin Han ◽  
Heinz Schmidt

Many cyber-physical systems operate together with others and with humans in a joint physical space. Because of their operation in proximity to humans, they have to operate according to very high safety standards. This chapter presents a method for developing the control software of cyber-physical systems. The method is model-based and assists engineers with spatial and real-time property verification. In particular, the authors describe a toolchain consisting of the model-based development toolset Reactive Blocks, the spatial analyzer BeSpaceD in conjunction with the real-time model checkers UPPAAL and PRISM. The combination of these tools makes it possible to create models of the control software and, if necessary, simulators for the actual system behavior with Reactive Blocks. These models can then be checked for various correctness properties using the analysis tools. If all properties are fulfilled, Reactive Blocks transforms the models automatically into executable code.


2020 ◽  
pp. 623-637
Author(s):  
Peter Herrmann ◽  
Jan Olaf Blech ◽  
Fenglin Han ◽  
Heinz Schmidt

A method preserving cyber-physical systems to operate safely in a joint physical space is presented. It comprises the model-based development of the control software and simulators for the continuous physical environment as well as proving the models for spatial and real-time properties. The corresponding toolchain is based on the model-based engineering tool Reactive Blocks and the spatial model checker BeSpaceD. The real-time constraints to be kept by the controller are proven using the model checker UPPAAL.


Sign in / Sign up

Export Citation Format

Share Document