spatial model
Recently Published Documents


TOTAL DOCUMENTS

1160
(FIVE YEARS 287)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 8 (1) ◽  
pp. 1-30
Author(s):  
Xinyu Ren ◽  
Seyyed Mohammadreza Rahimi ◽  
Xin Wang

Personalized location recommendation is an increasingly active topic in recent years, which recommends appropriate locations to users based on their temporal and geospatial visiting patterns. Current location recommendation methods usually estimate the users’ visiting preference probabilities from the historical check-ins in batch. However, in practice, when users’ behaviors are updated in real-time, it is often cost-inhibitive to re-estimate and updates users’ visiting preference using the same batch methods due to the number of check-ins. Moreover, an important nature of users’ movement patterns is that users are more attracted to an area where have dense locations with same categories for conducting specific behaviors. In this paper, we propose a location recommendation method called GeoRTGA by utilizing the real time user behaviors and geographical attractions to tackle the problems. GeoRTGA contains two sub-models: real time behavior recommendation model and attraction-based spatial model. The real time behavior recommendation model aims to recommend real-time possible behaviors which users prefer to visit, and the attraction-based spatial model is built to discover the category-based spatial and individualized spatial patterns based on the geographical information of locations and corresponding location categories and check-in numbers. Experiments are conducted on four public real-world check-in datasets, which show that the proposed GeoRTGA outperforms the five existing location recommendation methods.


2022 ◽  
Author(s):  
Mahsa Nadifar ◽  
Hossein Baghishani ◽  
Afshin Fallah
Keyword(s):  

2022 ◽  
Vol 8 (2) ◽  
pp. 127-136
Author(s):  
Rahmatia Susanti ◽  
S. Supriatna ◽  
R. Rokhmatulah ◽  
Masita Dwi Mandini Manessa ◽  
Aris Poniman ◽  
...  

The national primary always growth and increase in line with the increase in population, such as the rise of rice consumption in Indonesia.  Paddy productivity influenced by the physical condition of the land and the declining of those factors can detected from the environmental vulnerability parameters. Purpose of this study was to compile a spatial model of paddy productivity based on environmental vulnerability in each planting phase using the remote sensing and GIS technology approaches. This spatial model is compiled based on the results of the application of two models, namely spatial model of paddy planting phase and paddy productivity. The spatial model of paddy planting phase obtained from the analysis of vegetation index from Sentinel-2A imagery using the random forest classification model. The variables for building the spatial model of the paddy planting phase are a combination of NDVI vegetation index, EVI, SAVI, NDWI, and time variables. The overall accuracy of the paddy planting phase model is 0.92 which divides the paddy planting phase into the initial phase of planting, vegetative phase, generative phase, and fallow phase. The paddy productivity model obtained from environmental vulnerability analysis with GIS using the linear regression method. The variables used are environmental vulnerability variables which consist of hazards from floods, droughts, landslides, and rainfall. Estimation of paddy productivity based on the influence of environmental vulnerability has the best accuracy done at the vegetative phase of 0.63 and the generative phase of 0.61 while in the initial phase of planting cannot be used because it has a weak relationship with an accuracy of 0.35.


2021 ◽  
Author(s):  
Alex Gimenez-Romero ◽  
Federico Vazquez ◽  
Cristobal Lopez ◽  
Manuel A Matias

Marine infectious diseases are more prevalent in recent times due to climate change and other anthropogenic pressures, posing a substantial threat to marine ecosystems and the conservation of their biodiversity. An important subset of marine organisms are sessile, for which the most common mechanism for disease transmission is direct contact with waterborne parasites. Only recently, some deterministic compartmental models have been proposed to describe this kind of epidemics, being these models based on non-spatial descriptions where space is homogenised and parasite mobility is not explicitly accounted for. However, in realistic situations, epidemic transmission is conditioned by the spatial distribution of hosts and the parasites mobility patterns. Thus, the interplay between these factors is expected to have a crucial effect in the evolution of the epidemic, so calling for a explicit description of space. In this work we develop a spatially-explicit individual-based model to study disease transmission by waterborne parasites in sessile marine populations. We investigate the impact of spatial disease transmission, performing extensive numerical simulations and analytical approximations. Specifically, the effects of parasite mobility into the epidemic threshold and the temporal evolution of the epidemic are assessed. We show that larger values of pathogen mobility have two main implications: more severe epidemics, as the number of infections increases, and shorter time-scales to extinction. Moreover, an analytical expression for the basic reproduction number of the spatial model, is derived as function of the non-spatial counterpart, which characterises a transition between a disease-free and a propagation phase, in which the disease propagates over a large fraction of the system. This allows to determine a phase diagram for the epidemic model as function of the parasite mobility and the basic reproduction number of the non-spatial model.


Author(s):  
Joebson Maurilio Alves Santos ◽  
Tatiane Almeida Menezes ◽  
Rodrigo Gomes Arruda ◽  
Flávia Emília Cavalcante Valença Fernandes

Sign in / Sign up

Export Citation Format

Share Document