SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)

Author(s):  
Krzysztof Patan ◽  
Marcin Witczak ◽  
Józef Korbicz

Towards Robustness in Neural Network Based Fault DiagnosisChallenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural networks become more and more popular in industrial applications of fault diagnosis. Taking into account the two crucial aspects, i.e., the nonlinear behaviour of the system being diagnosed as well as the robustness of a fault diagnosis scheme with respect to modelling uncertainty, two different neural network based schemes are described and carefully discussed. The final part of the paper presents an illustrative example regarding the modelling and fault diagnosis of a DC motor, which shows the performance of the proposed strategy.


Author(s):  
Marco Branciforte ◽  
Riccardo Caponetto ◽  
Mario Lavorgna ◽  
Luigi Occhipinti

Author(s):  
Siddhartha Bhattacharyya ◽  
Ujjwal Maulik ◽  
Sanghamitra Bandyopadhyay

Soft Computing is a relatively new computing paradigm bestowed with tools and techniques for handling real world problems. The main components of this computing paradigm are neural networks, fuzzy logic and evolutionary computation. Each and every component of the soft computing paradigm operates either independently or in coalition with the other components for addressing problems related to modeling, analysis and processing of data. An overview of the essentials and applications of the soft computing paradigm is presented in this chapter with reference to the functionalities and operations of its constituent components. Neural networks are made up of interconnected processing nodes/neurons, which operate on numeric data. These networks posses the capabilities of adaptation and approximation. The varied amount of uncertainty and ambiguity in real world data are handled in a linguistic framework by means of fuzzy sets and fuzzy logic. Hence, this component is efficient in understanding vagueness and imprecision in real world knowledge bases. Genetic algorithms, simulated annealing algorithm and ant colony optimization algorithm are representative evolutionary computation techniques, which are efficient in deducing an optimum solution to a problem, thanks to the inherent exhaustive search methodologies adopted. Of late, rough sets have evolved to improve upon the performances of either of these components by way of approximation techniques. These soft computing techniques have been put to use in wide variety of problems ranging from scientific to industrial applications. Notable among these applications include image processing, pattern recognition, Kansei information processing, data mining, web intelligence etc.


Sign in / Sign up

Export Citation Format

Share Document