Compensation of the range resolution degradation in a bistatic scenario and its influence on classification

Author(s):  
Theresa Haumtratz ◽  
Tanja Bieker ◽  
Stefan Lindenmeier
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 997
Author(s):  
Jun Zhong ◽  
Xin Gou ◽  
Qin Shu ◽  
Xing Liu ◽  
Qi Zeng

Foreign object debris (FOD) on airport runways can cause serious accidents and huge economic losses. FOD detection systems based on millimeter-wave (MMW) radar sensors have the advantages of higher range resolution and lower power consumption. However, it is difficult for traditional FOD detection methods to detect and distinguish weak signals of targets from strong ground clutter. To solve this problem, this paper proposes a new FOD detection approach based on optimized variational mode decomposition (VMD) and support vector data description (SVDD). This approach utilizes SVDD as a classifier to distinguish FOD signals from clutter signals. More importantly, the VMD optimized by whale optimization algorithm (WOA) is used to improve the accuracy and stability of the classifier. The results from both the simulation and field case show the excellent FOD detection performance of the proposed VMD-SVDD method.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2436 ◽  
Author(s):  
Jiajia Jiang ◽  
Xianquan Wang ◽  
Fajie Duan ◽  
Chunyue Li ◽  
Xiao Fu ◽  
...  

The covertness of the active sonar is a very important issue and the sonar signal waveform design problem was studied to improve covertness of the system. Many marine mammals produce call pulses for communication and echolocation, and existing interception systems normally classify these biological signals as ocean noise and filter them out. Based on this, a bio-inspired covert active sonar strategy was proposed. The true, rather than man-made sperm whale, call pulses were used to serve as sonar waveforms so as to ensure the camouflage ability of sonar waveforms. A range and velocity measurement combination (RVMC) was designed by using two true sperm whale call pulses which had excellent range resolution (RR) and large Doppler tolerance (DT). The range and velocity estimation methods were developed based on the RVMC. In the sonar receiver, the correlation technology was used to confirm the start and end time of sonar signals and their echoes, and then based on the developed range and velocity estimation method, the range and velocity of the underwater target were obtained. Then, the RVMC was embedded into the true sperm whale call-train to improve the camouflage ability of the sonar signal-train. Finally, experiment results were provided to verify the performance of the proposed method.


2008 ◽  
Vol 55 (9) ◽  
pp. 1441-1462 ◽  
Author(s):  
Ljuan L. Gurdev ◽  
Tanja N. Dreischuh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document