Optimal Control of State-Dependent Service Rates in a MAP/M/1 Queue

2017 ◽  
Vol 62 (10) ◽  
pp. 4965-4979 ◽  
Author(s):  
Li Xia ◽  
Qi-Ming He ◽  
Attahiru Sule Alfa
Author(s):  
Prakash S. Kasturi ◽  
Pierre E. Dupont

Abstract Optimal control of dampers has been proposed to mitigate vibration effects in mechanical systems. In many cases, systems are subject to periodic forcing and the goal is to maximize the energy dissipated by the damper. In contrast to prior work utilizing instantaneous or infinite-time-horizon optimization, this paper employs periodic optimal control to maximize the energy dissipated per cycle. For single degree of freedom systems in which the maximum allowable control effort is of the same order as the forcing magnitude, a state-dependent singular control law is shown to deliver maximum energy dissipation. Alternate control laws are proposed for situations when rattlespace requirements dictate damper displacements other than that of the singular solution.


Author(s):  
Pamela Badian-Pessot ◽  
Mark E. Lewis ◽  
Douglas G. Down

AbstractWe consider an M/M/1 queue with a removable server that dynamically chooses its service rate from a set of finitely many rates. If the server is off, the system must warm up for a random, exponentially distributed amount of time, before it can begin processing jobs. We show under the average cost criterion, that work conserving policies are optimal. We then demonstrate the optimal policy can be characterized by a threshold for turning on the server and the optimal service rate increases monotonically with the number in system. Finally, we present some numerical experiments to provide insights into the practicality of having both a removable server and service rate control.


2019 ◽  
Vol 34 (4) ◽  
pp. 507-521
Author(s):  
Urtzi Ayesta ◽  
Balakrishna Prabhu ◽  
Rhonda Righter

We consider single-server scheduling to minimize holding costs where the capacity, or rate of service, depends on the number of jobs in the system, and job sizes become known upon arrival. In general, this is a hard problem, and counter-intuitive behavior can occur. For example, even with linear holding costs the optimal policy may be something other than SRPT or LRPT, it may idle, and it may depend on the arrival rate. We first establish an equivalence between our problem of deciding which jobs to serve when completed jobs immediately leave, and a problem in which we have the option to hold on to completed jobs and can choose when to release them, and in which we always serve jobs according to SRPT. We thus reduce the problem to determining the release times of completed jobs. For the clearing, or transient system, where all jobs are present at time 0, we give a complete characterization of the optimal policy and show that it is fully determined by the cost-to-capacity ratio. With arrivals, the problem is much more complicated, and we can obtain only partial results.


1996 ◽  
Vol 28 (01) ◽  
pp. 285-307 ◽  
Author(s):  
Leandros Tassiulas ◽  
Anthony Ephremides

A queueing network with arbitrary topology, state dependent routing and flow control is considered. Customers may enter the network at any queue and they are routed through it until they reach certain queues from which they may leave the system. The routing is based on local state information. The service rate of a server is controlled based on local state information as well. A distributed policy for routing and service rate control is identified that achieves maximum throughput. The policy can be implemented without knowledge of the arrival and service rates. The importance of flow control is demonstrated by showing that, in certain networks, if the servers cannot be forced to idle, then no maximum throughput policy exists when the arrival rates are not known. Also a model for exchange of state information among neighboring nodes is presented and the network is studied when the routing is based on delayed state information. A distributed policy is shown to achieve maximum throughput in the case of delayed state information. Finally, some implications for deterministic flow networks are discussed.


1982 ◽  
Vol 14 (03) ◽  
pp. 654-671 ◽  
Author(s):  
T. C. Brown ◽  
P. K. Pollett

We consider single-class Markovian queueing networks with state-dependent service rates (the immigration processes of Whittle (1968)). The distance of customer flows from Poisson processes is estimated in both the open and closed cases. The bounds on distances lead to simple criteria for good Poisson approximations. Using the bounds, we give an asymptotic, closed network version of the ‘loop criterion' of Melamed (1979) for an open network. Approximation of two or more flows by independent Poisson processes is also studied.


2018 ◽  
Vol 13 (1) ◽  
pp. 60-68
Author(s):  
Sushil Ghimire ◽  
Gyan Bahadur Thapa ◽  
Ram Prasad Ghimire

 Providing service immediately after the arrival is rarely been used in practice. But there are some situations for which servers are more than the arrivals and no one has to wait to get served. In this model, arrival rate is


Sign in / Sign up

Export Citation Format

Share Document