distributional approximations
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 2)

Econometrica ◽  
2020 ◽  
Vol 88 (5) ◽  
pp. 2203-2219 ◽  
Author(s):  
Matias D. Cattaneo ◽  
Michael Jansson ◽  
Kenichi Nagasawa

This paper proposes a valid bootstrap‐based distributional approximation for M‐estimators exhibiting a Chernoff (1964)‐type limiting distribution. For estimators of this kind, the standard nonparametric bootstrap is inconsistent. The method proposed herein is based on the nonparametric bootstrap, but restores consistency by altering the shape of the criterion function defining the estimator whose distribution we seek to approximate. This modification leads to a generic and easy‐to‐implement resampling method for inference that is conceptually distinct from other available distributional approximations. We illustrate the applicability of our results with four examples in econometrics and machine learning.


2019 ◽  
Vol 11 (1) ◽  
pp. 193-224 ◽  
Author(s):  
Joel L. Horowitz

The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one's data or a model estimated from the data. Under conditions that hold in a wide variety of econometric applications, the bootstrap provides approximations to distributions of statistics, coverage probabilities of confidence intervals, and rejection probabilities of hypothesis tests that are more accurate than the approximations of first-order asymptotic distribution theory. The reductions in the differences between true and nominal coverage or rejection probabilities can be very large. In addition, the bootstrap provides a way to carry out inference in certain settings where obtaining analytic distributional approximations is difficult or impossible. This article explains the usefulness and limitations of the bootstrap in contexts of interest in econometrics. The presentation is informal and expository. It provides an intuitive understanding of how the bootstrap works. Mathematical details are available in the references that are cited.


2016 ◽  
Vol 34 (2) ◽  
pp. 277-301 ◽  
Author(s):  
Matias D. Cattaneo ◽  
Michael Jansson ◽  
Whitney K. Newey

Many empirical studies estimate the structural effect of some variable on an outcome of interest while allowing for many covariates. We present inference methods that account for many covariates. The methods are based on asymptotics where the number of covariates grows as fast as the sample size. We find a limiting normal distribution with variance that is larger than the standard one. We also find that with homoskedasticity this larger variance can be accounted for by using degrees-of-freedom-adjusted standard errors. We link this asymptotic theory to previous results for many instruments and for small bandwidth(s) distributional approximations.


2012 ◽  
Vol 49 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Max Skipper

Using Stein's method, we derive explicit upper bounds on the total variation distance between a Poisson-binomial law (the distribution of a sum of independent but not necessarily identically distributed Bernoulli random variables) and a Pólya distribution with the same support, mean, and variance; a nonuniform bound on the pointwise distance between the probability mass functions is also given. A numerical comparison of alternative distributional approximations on a somewhat representative collection of case studies is also exhibited. The evidence proves that no single one is uniformly most accurate, though it suggests that the Pólya approximation might be preferred in several parameter domains encountered in practice.


2012 ◽  
Vol 49 (03) ◽  
pp. 745-757 ◽  
Author(s):  
Max Skipper

Using Stein's method, we derive explicit upper bounds on the total variation distance between a Poisson-binomial law (the distribution of a sum of independent but not necessarily identically distributed Bernoulli random variables) and a Pólya distribution with the same support, mean, and variance; a nonuniform bound on the pointwise distance between the probability mass functions is also given. A numerical comparison of alternative distributional approximations on a somewhat representative collection of case studies is also exhibited. The evidence proves that no single one is uniformly most accurate, though it suggests that the Pólya approximation might be preferred in several parameter domains encountered in practice.


2009 ◽  
Vol 147 (1) ◽  
pp. 95-114 ◽  
Author(s):  
ADAM J. HARPER

AbstractIn this paper, we apply Stein's method for distributional approximations to prove a quantitative form of the Erdös–Kac Theorem. We obtain our best bound on the rate of convergence, on the order of log log log n (log log n)−1/2, by making an intermediate Poisson approximation; we believe that this approach is simpler and more probabilistic than others, and we also obtain an explicit numerical value for the constant implicit in the bound. Different ways of applying Stein's method to prove the Erdös–Kac Theorem are discussed, including a Normal approximation argument via exchangeable pairs, where the suitability of a Poisson approximation naturally suggests itself.


Sign in / Sign up

Export Citation Format

Share Document