rate optimization
Recently Published Documents


TOTAL DOCUMENTS

459
(FIVE YEARS 129)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Abel Lorences-Riesgo ◽  
Dylan Le Gac ◽  
Marti Sales-Llopis ◽  
Sami Mumtaz ◽  
Celestino S. Martins ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 109-127
Author(s):  
George C. Alexandropoulos

The hardware complexity of the analog Self-Interference (SI) canceler in conventional full duplex Multiple Input Multiple Output (MIMO) designs mostly scales with the number of transmit and receive antennas, thus exploiting the benefits of analog cancellation becomes impractical for full duplex MIMO transceivers, even for a moderate number of antennas. In this paper, we provide an overview of two recent hardware architectures for the analog canceler comprising of reduced number of cancellation elements, compared to the state of the art, and simple multiplexers for efficient signal routing among the transceiver radio-frequency chains. The one architecture is based on analog taps and the other on AUXiliary (AUX) Transmitters (TXs). In contrast to the available analog cancellation architectures, the values for each tap or each AUX TX and the configuration of the multiplexers are jointly designed with the digital transceiver beamforming filters according to desired performance objectives. We present a general optimization framework for the joint design of analog SI cancellation and digital beamforming, and detail an example algorithmic solution for the sum-rate optimization objective. Our representative computer simulation results demonstrate the superiority, both in terms of hardware complexity and achievable performance, of the presented low complexity full duplex MIMO schemes over the relative available ones in the literature. We conclude the paper with a discussion on recent simultaneous transmit and receive operations capitalizing on the presented architectures, and provide a list of open challenges and research directions for future FD MIMO communication systems, as well as their promising applications.


2021 ◽  
Author(s):  
Hao Gao ◽  
Jiulong Liu ◽  
Yuting Lin ◽  
Gregory N Gan ◽  
Guillem Pratx ◽  
...  

2021 ◽  
Author(s):  
Ahmed E. Radwan ◽  
Souvik Sen

Abstract The purpose of this study is to evaluate the reservoir geomechanics and stress path values of the depleted Miocene sandstone reservoirs of the Badri field, Gulf of Suez Basin, in order to understand the production-induced normal faulting potential in these depleted reservoirs. We interpreted the magnitudes of pore pressure (PP), vertical stress (Sv), and minimum horizontal stress (Shmin) of the syn-rift and post-rift sedimentary sequences encountered in the studied field, as well as we validated the geomechanical characteristics with subsurface measurements (i.e. leak-off test (LOT), and modular dynamic tests) (MDT). Stress path (ΔPP/ΔShmin) was modeled considering a pore pressure-horizontal stress coupling in an uniaxial compaction environment. Due to prolonged production, The Middle Miocene Hammam Faraun (HF) and Kareem reservoirs have been depleted by 950-1000 PSI and 1070-1200 PSI, respectively, with current 0.27-0.30 PSI/feet PP gradients as interpreted from initial and latest downhole measurements. Following the poroelastic approach, reduction in Shmin is assessed and reservoir stress paths values of 0.54 and 0.59 are inferred in the HF and Kareem sandstones, respectively. As a result, the current rate of depletion for both Miocene reservoirs indicates that reservoir conditions are stable in terms of production-induced normal faulting. Although future production years should be paid more attention. Accelerated depletion rate could have compelled the reservoirs stress path values to the critical level, resulting in depletion-induced reservoir instability. The operator could benefit from stress path analysis in future planning of infill well drilling and production rate optimization without causing reservoir damage or instability.


Sign in / Sign up

Export Citation Format

Share Document