scholarly journals Cancer Detection in Highly Dense Breasts Using Coherently Focused Time-Reversal Microwave Imaging

2017 ◽  
Vol 3 (4) ◽  
pp. 928-939 ◽  
Author(s):  
Md. Delwar Hossain ◽  
Ananda Sanagavarapu Mohan
2013 ◽  
Vol 12 ◽  
pp. 241-244 ◽  
Author(s):  
Md. Delwar Hossain ◽  
Ananda Sanagavarapu Mohan ◽  
Mohammed Jainul Abedin

Author(s):  
Iris Allajbeu ◽  
Sarah E Hickman ◽  
Nicholas Payne ◽  
Penelope Moyle ◽  
Kathryn Taylor ◽  
...  

Abstract Purpose of Review Automated breast ultrasound (ABUS) is a three-dimensional imaging technique, used as a supplemental screening tool in women with dense breasts. This review considers the technical aspects, pitfalls, and the use of ABUS in screening and clinical practice, together with new developments and future perspectives. Recent Findings ABUS has been approved in the USA and Europe as a screening tool for asymptomatic women with dense breasts in addition to mammography. Supplemental US screening has high sensitivity for cancer detection, especially early-stage invasive cancers, and reduces the frequency of interval cancers. ABUS has similar diagnostic performance to handheld ultrasound (HHUS) and is designed to overcome the drawbacks of operator dependence and poor reproducibility. Concerns with ABUS, like HHUS, include relatively high recall rates and lengthy reading time when compared to mammography. ABUS is a new technique with unique features; therefore, adequate training is required to improve detection and reduce false positives. Computer-aided detection may reduce reading times and improve cancer detection. Other potential applications of ABUS include local staging, treatment response evaluation, breast density assessment, and integration of radiomics. Summary ABUS provides an efficient, reproducible, and comprehensive supplemental imaging technique in breast screening. Developments with computer-aided detection may improve the sensitivity and specificity as well as radiologist confidence and reduce reading times, making this modality acceptable in large volume screening centers.


2010 ◽  
Vol 107 ◽  
pp. 203-217 ◽  
Author(s):  
Martin O'Halloran ◽  
Martin Glavin ◽  
Edward Jones

2018 ◽  
Vol 60 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
Ayed R. AlAjmi ◽  
Mohammad A. Saed

Author(s):  
Lulu Wang ◽  
Hu Peng

Microwave imaging (MI) has been considered as an alternative way to X-ray mammography for breast cancer detection. This paper presents a compressive sensing based holographic microwave imaging (CS-HMI) approach for diagnosing of breast cancer. A numerical imaging system is developed to validate the proposed CS-HMI approach, which includes a realistic human breast phantom and measurement model. Small breast tumour can be detected in the reconstructed CS-HMI image via Split Bregman (SB) with using 10% measurement data. Simulation and experimental results show that CS-HMI has the ability to produce high quality image by using significantly less measurement data and operation time.


Sign in / Sign up

Export Citation Format

Share Document