Constrained quadratic programming techniques for control allocation

2006 ◽  
Vol 14 (1) ◽  
pp. 91-98 ◽  
Author(s):  
J.A.M. Petersen ◽  
M. Bodson
2013 ◽  
Vol 427-429 ◽  
pp. 341-345
Author(s):  
Xue Fei Chang ◽  
Zhe Yong Piao ◽  
Xiang Yu Lv ◽  
De Xin Li

Co-optimization of output and reserve is necessary in order to provide maximum benefit to both consumers and producers. Once renewable generation sources like wind or solar begin to make up a large proportion of the generation mix, this co-optimization becomes much more difficult since the output of renewable sources is not well-known in advance. In this paper, a uniform reliability level is used as a constraint in the process of output and reserve. The proposed model is tested on the modified 5-bus PJM system. The co-optimization is performed by sequential quadratic programming techniques. The results show that the co-optimization results are strongly related to the uncertainties of wind power, the reliability level of the system, and the reliability of generators when wind makes up a significant portion of the generation mix.


Author(s):  
Ou Ma ◽  
Meyer Nahon

Abstract Presented in this paper is a general method used to find the distance between two moving objects. This distance is defined as the length of the shortest path from one object to the other. The objects are assumed to be composed of arbitrary quadratic surface segments. The distance problem is formulated as a quadratic programming problem with linear and/or quadratic constraints, which is solved by efficient and robust quadratic programming techniques. Attention is focused on implementation in order to achieve computational efficiency for real-time applications. Computing tests show that the computational speed of this method is of linear order in terms of the total number of bounding surfaces of the two objects. It is also shown that, with a minor modification, this method can be used to calculate the interference between objects. A corresponding general software code has been implemented, and will be used for kinematics and dynamics modelling and simulation of space manipulators including situations with transient topologies, contact of environment, and capture/release of payloads.


Sign in / Sign up

Export Citation Format

Share Document