A Memory-Efficient Hardware Architecture for Connected Component Labeling in Embedded System

2020 ◽  
Vol 30 (9) ◽  
pp. 3238-3252 ◽  
Author(s):  
Chen Zhao ◽  
Wu Gao ◽  
Feiping Nie
Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 292
Author(s):  
Stefania Perri ◽  
Fanny Spagnolo ◽  
Pasquale Corsonello

Connected component labeling is one of the most important processes for image analysis, image understanding, pattern recognition, and computer vision. It performs inherently sequential operations to scan a binary input image and to assign a unique label to all pixels of each object. This paper presents a novel hardware-oriented labeling approach able to process input pixels in parallel, thus speeding up the labeling task with respect to state-of-the-art competitors. For purposes of comparison with existing designs, several hardware implementations are characterized for different image sizes and realization platforms. The obtained results demonstrate that frame rates and resource efficiency significantly higher than existing counterparts are achieved. The proposed hardware architecture is purposely designed to comply with the fourth generation of the advanced extensible interface (AXI4) protocol and to store intermediate and final outputs within an off-chip memory. Therefore, it can be directly integrated as a custom accelerator in virtually any modern heterogeneous embedded system-on-chip (SoC). As an example, when integrated within the Xilinx Zynq-7000 X C7Z020 SoC, the novel design processes more than 1.9 pixels per clock cycle, thus furnishing more than 30 2k × 2k labeled frames per second by using 3688 Look-Up Tables (LUTs), 1415 Flip Flops (FFs), and 10 kb of on-chip memory.


Author(s):  
BILAL BATAINEH

Connected-component labeling is an important process in image analysis and pattern recognition. It aims to deduct the connected components by giving a unique label value for each individual component. Many algorithms have been proposed, but they still face several problems such as slow execution time, falling in the pipeline, requiring a huge amount of memory with high resolution, being noisy, and giving irregular images. In this work, a fast and memory- efficient connected-component labeling algorithm for binary images is proposed. The proposed algorithm is based on a new run-base tracing method with a new resolving process to find the final equivalent label values. A set of experiments were conducted on different types of binary images. The proposed algorithm showed high performance compared to the other algorithms.


2009 ◽  
Vol 42 (9) ◽  
pp. 1977-1987 ◽  
Author(s):  
Lifeng He ◽  
Yuyan Chao ◽  
Kenji Suzuki ◽  
Kesheng Wu

Sign in / Sign up

Export Citation Format

Share Document