Voltage stability analysis and real power loss reduction in distributed distribution system

Author(s):  
L. Ramesh ◽  
S. P. Chowdhury ◽  
S. Chowdhury ◽  
Y. H. Song ◽  
A. A. Natarajan
Author(s):  
Lenin Kanagasabai

In this paper Billfish Optimization Algorithm (BOA) and Red Mullet Optimization (RMO) Algorithm has been designed for voltage stability enhancement and power loss reduction. Electrical Power is one among vital need in the society and also it plays lead role in formation of smart cities. Continuous power supply is essential and mainly quality of the power should be maintained in good mode. In this work real power loss reduction is key objective. Natural hunting actions of Billfish over pilchards are utilized to model the algorithm. Candidate solutions in the projected algorithm are Billfish and population in the exploration space is arbitrarily engendered. Movement of Billfish is high, it will attack the pilchards vigorously and it can’t escape from the attack done by the group of Billfish. Then in this paper Red Mullet Optimization (RMO) Algorithm is proposed to solve optimal reactive power problem. Projected RMO algorithm modeled based on the behavior and characteristics of red mullet. As a group they hunt for the prey and in each group there will be chaser and blocker. When the prey approaches any one of the blocker red mullet then automatically it will turn as new chaser. So roles will interchangeable and very much flexible. At any time chaser will become blocker and any of the blocker will become a chaser with respect to prey position and conditions. Then in that particular area when all the preys are hunted completed then red mullet group will change the area. So there will be flexibility and changing the role quickly with respect to prey position. Alike to that with reference to the fitness function the particle will be chosen as chaser. By means of considering L (voltage stability) - index BOA, and RMO algorithms verified in IEEE 30- bus system. Then without L-index BOA and RMO algorithms is appraised in 30 bus test systems. Both BOA and RMO algorithms condensed the power loss proficiently with improvement in voltage stability and minimization of voltage deviation.


10.29007/bngk ◽  
2018 ◽  
Author(s):  
Jaydeepsinh Sarvaiya ◽  
Mahipalsinh Chudasama

DG penetration is continuously increased across distribution network not only to reduce carbon emission, but also to enhance the performance of the distribution network. In a restructured environment any distribution utility need to address DG placement and sizing problem to find a cost effective solution for the specific investment. Most of the authors have attempted to solve the problem based on real power loss reduction across the network. Some authors consider voltage stability based analysis for increased loadability of network with real power loss. However, optimal reactive power compensation also need to be incorporated for a cost effective solution. In this paper an attempt has been made to address various types of DG and RPC units citing and sizing problem with multi-objectives consists real power loss reduction and VSI improvement. A new approach includes development of cost function to find cost-effective solution for distribution network. Evolutionary based Genetic Algorithm used to optimize the objective function. Proposed algorithm is tested onIEEE-33 bus radial distribution system.


Author(s):  
Lenin Kanagasabai

<p><span>To solve optimal reactive power problem this paper projects Hyena Optimizer (HO) algorithm and it inspired from the behaviour of Hyena. Collaborative behaviour &amp; Social relationship between Hyenas is the key conception in this algorithm. Hyenas a form of carnivoran mammal &amp; deeds are analogous to canines in several elements of convergent evolution. Hyenas catch the prey with their teeth rather than claws – possess hardened skin feet with large, blunt, no retractable claws are adapted for running and make sharp turns. However, the hyenas' grooming, scent marking, defecating habits, mating and parental behaviour are constant with the deeds of other feliforms. Mathematical modelling is formulated for the basic attributes of Hyena. Standard IEEE 14,300 bus test systems used to analyze the performance of Hyena Optimizer (HO) algorithm. Loss has been reduced with control variables are within the limits.</span></p>


Sign in / Sign up

Export Citation Format

Share Document