Real Power Loss Reduction by Billfish and Red Mullet Optimization Algorithms

Author(s):  
Lenin Kanagasabai

In this paper Billfish Optimization Algorithm (BOA) and Red Mullet Optimization (RMO) Algorithm has been designed for voltage stability enhancement and power loss reduction. Electrical Power is one among vital need in the society and also it plays lead role in formation of smart cities. Continuous power supply is essential and mainly quality of the power should be maintained in good mode. In this work real power loss reduction is key objective. Natural hunting actions of Billfish over pilchards are utilized to model the algorithm. Candidate solutions in the projected algorithm are Billfish and population in the exploration space is arbitrarily engendered. Movement of Billfish is high, it will attack the pilchards vigorously and it can’t escape from the attack done by the group of Billfish. Then in this paper Red Mullet Optimization (RMO) Algorithm is proposed to solve optimal reactive power problem. Projected RMO algorithm modeled based on the behavior and characteristics of red mullet. As a group they hunt for the prey and in each group there will be chaser and blocker. When the prey approaches any one of the blocker red mullet then automatically it will turn as new chaser. So roles will interchangeable and very much flexible. At any time chaser will become blocker and any of the blocker will become a chaser with respect to prey position and conditions. Then in that particular area when all the preys are hunted completed then red mullet group will change the area. So there will be flexibility and changing the role quickly with respect to prey position. Alike to that with reference to the fitness function the particle will be chosen as chaser. By means of considering L (voltage stability) - index BOA, and RMO algorithms verified in IEEE 30- bus system. Then without L-index BOA and RMO algorithms is appraised in 30 bus test systems. Both BOA and RMO algorithms condensed the power loss proficiently with improvement in voltage stability and minimization of voltage deviation.

Author(s):  
Lenin Kanagasabai

<p><span>To solve optimal reactive power problem this paper projects Hyena Optimizer (HO) algorithm and it inspired from the behaviour of Hyena. Collaborative behaviour &amp; Social relationship between Hyenas is the key conception in this algorithm. Hyenas a form of carnivoran mammal &amp; deeds are analogous to canines in several elements of convergent evolution. Hyenas catch the prey with their teeth rather than claws – possess hardened skin feet with large, blunt, no retractable claws are adapted for running and make sharp turns. However, the hyenas' grooming, scent marking, defecating habits, mating and parental behaviour are constant with the deeds of other feliforms. Mathematical modelling is formulated for the basic attributes of Hyena. Standard IEEE 14,300 bus test systems used to analyze the performance of Hyena Optimizer (HO) algorithm. Loss has been reduced with control variables are within the limits.</span></p>


2020 ◽  
Vol 7 (2) ◽  
pp. E1-E6
Author(s):  
L. Kanagasabai

This paper aims to use the Rock Dove (RD) optimization algorithm and the Fuligo Septica optimization (FSO) algorithm for power loss reduction. Rock Dove towards a particular place is based on the familiar (sight) objects on the traveling directions. In the formulation of the RD algorithm, atlas and range operator, and familiar sight operators have been defined and modeled. Every generation number of Rock Dove is reduced to half in the familiar sight operator and Rock Dove segment, which hold the low fitness value that occupying the lower half of the generation will be discarded. Because it is implicit that the individual’s Rock Dove is unknown with familiar sights and very far from the destination place, a few Rock Doves will be at the center of the iteration. Each Rock Dove can fly towards the final target place. Then in this work, the FSO algorithm is designed for real power loss reduction. The natural vacillation mode of Fuligo Septica has been imitated to develop the algorithm. Fuligo Septica connects the food through swinging action and possesses exploration and exploitation capabilities. Fuligo Septica naturally lives in chilly and moist conditions. Mainly the organic matter in the Fuligo Septica will search for the food and enzymes formed will digest the food. In the movement of Fuligo Septica it will spread like a venous network, and cytoplasm will flow inside the Fuligo Septica in all ends. THE proposed RD optimization algorithm and FSO algorithm have been tested in IEEE 14, 30, 57, 118, and 300 bus test systems and simulation results show the projected RD and FSO algorithm reduced the real power loss. Keywords: optimal reactive power, transmission loss, Rock Dove, Fuligo Septica.


Author(s):  
K. Lenin

In this paper, Enriched Genetic Algorithm (EGA) utilized to solve reactive power optimization problem. In the proposed algorithm Stochastic Universal Selection (SS) is utilized to improve the selection procedure. The selection method in Genetic algorithm (GA) plays a significant role in the runtime to get the optimized solution as well as in the superiority of the solution. In this work, an enriched selection technique is presented which uphold both fast runtime and elevated quality solution. Proposed EGA algorithm has been tested in standard IEEE 118 & practical 191 bus test systems and simulation results show clearly the advanced performance of the proposed algorithm in reducing the real power loss.


Author(s):  
Kanagasabai Lenin

<p>In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. Dolphins have numerous remarkable natural distinctiveness and living behavior such as echolocation, information interactions, collaboration, and partition of labor. Merging these natural distinctiveness and living behavior with swarm intelligence has been modeled to solve the reactive power problem. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.</p>


Author(s):  
Kanagasabai Lenin

In this work an innovative synthetic supportive exploration (SSE) algorithm is utilized for solving optimal reactive power problem. Projected algorithm is based on communication between two simulated fabulous creatures as both of them intermingle and voyage to altered zones to find comprehensive minimum. In a definite zone according to the climate altering conditions amount of food can be found will be varied. Due to this reason, fabulous creatures develop seasonal exodus deeds to find out improved food sources. Earlier to exodus fabulous creatures will divide into subgroups in order to find an improved food source. Coordination of sub-groups will determine the performance of the search. Communication and exploration are the two key deeds of the fabulous creatures. Also, the two fabulous creatures make a decision on the marauder and prey by the sub fabulous creature. Proposed synthetic supportive exploration (SSE) algorithm has been tested in IEEE 14 and 300 bus systems. Real power loss power loss reduction achieved.


2018 ◽  
Vol 6 (3) ◽  
pp. 203-213
Author(s):  
K. Lenin

In this paper, Enhanced Artificial Bee Colony (EABC) algorithm is proposed for solving optimal reactive power problem. The projected method assimilates crossover operation from Genetic Algorithm (GA) with artificial bee colony (ABC) algorithm. The EABC strengthens the exploitation phase of ABC as crossover enhances exploration of search space.  Projected EABC algorithm has been tested on has been tested on standard IEEE 118 & practical 191 bus test systems and simulation results show clearly about the premium performance of the proposed algorithm in reducing the real power loss.


Author(s):  
Kanagasabai Lenin

<p><span lang="EN-US">This paper projects Gryllidae Optimization Algorithm (GOA) has been applied to solve optimal reactive power problem. Proposed GOA approach is based on the chirping characteristics of Gryllidae. In common, male Gryllidae chirp, on the other hand some female Gryllidae also do as well. Male Gryllidae draw the females by this sound which they produce. Moreover, they caution the other Gryllidae against dangers with this sound. The hearing organs of the Gryllidae are housed in an expansion of their forelegs. Through this, they bias to the produced fluttering sounds. Proposed Gryllidae Optimization Algorithm (GOA) has been tested in standard IEEE 14, 30 bus test systems and simulation results show that the projected algorithms reduced the real power loss considerably.</span></p>


Sign in / Sign up

Export Citation Format

Share Document