Channel allocation of mobile cellular network based on graph theory

Author(s):  
Md.I. Islam ◽  
A.B.M.S. Hossain
Author(s):  
Lutfi Mohammed Omer Khanbary ◽  
Deo Prakash Vidyarthi

The scarcity of the radio channel is the main bottleneck toward maintaining the quality of service (QoS) in a mobile cellular network. As channel allocation schemes become more complex and computationally demanding, alternative computational models that include knowledge-based algorithms and provide the means for faster processing are becoming a topic of research interest. An efficient deterministic technique, capable of handling channel allocation problems, is introduced as an alternative. The proposed model utilizes the Global Positioning System (GPS) data for tracing the hosts’ likely movements within and across the cells and allocates the channels to the mobile devices accordingly. The allocation of the channels to the mobile hosts is deterministic in the sense that the decision of the channel allocation is based on the realistic data received from the GPS about the hosts’ movements. The performance of the proposed technique has been evaluated by conducting the simulation experiments for the two parameters—call blocking and handoff failures. Also, a comparison of the proposed model with an earlier model has been carried out to estimate the effectiveness of the proposed technique. Experimental results reveal that the proposed technique performs better and is more realistic as well.


2010 ◽  
pp. 1614-1630
Author(s):  
Lutfi Mohammed Omer Khanbary ◽  
Deo Prakash Vidyarthi

The scarcity of the radio channel is the main bottleneck toward maintaining the quality of service (QoS) in a mobile cellular network. As channel allocation schemes become more complex and computationally demanding, alternative computational models that include knowledge-based algorithms and provide the means for faster processing are becoming a topic of research interest. An efficient deterministic technique, capable of handling channel allocation problems, is introduced as an alternative. The proposed model utilizes the Global Positioning System (GPS) data for tracing the hosts’ likely movements within and across the cells and allocates the channels to the mobile devices accordingly. The allocation of the channels to the mobile hosts is deterministic in the sense that the decision of the channel allocation is based on the realistic data received from the GPS about the hosts’ movements. The performance of the proposed technique has been evaluated by conducting the simulation experiments for the two parameters—call blocking and handoff failures. Also, a comparison of the proposed model with an earlier model has been carried out to estimate the effectiveness of the proposed technique. Experimental results reveal that the proposed technique performs better and is more realistic as well.


Author(s):  
Lutfi Mohammed Omer Khanbary ◽  
Deo Prakash Vidyarthi

The scarcity of the radio channel is the main bottleneck toward maintaining the quality of service (QoS) in a mobile cellular network. As channel allocation schemes become more complex and computationally demanding, alternative computational models that include knowledge-based algorithms and provide the means for faster processing are becoming a topic of research interest. An efficient deterministic technique, capable of handling channel allocation problems, is introduced as an alternative. The proposed model utilizes the Global Positioning System (GPS) data for tracing the hosts’ likely movements within and across the cells and allocates the channels to the mobile devices accordingly. The allocation of the channels to the mobile hosts is deterministic in the sense that the decision of the channel allocation is based on the realistic data received from the GPS about the hosts’ movements. The performance of the proposed technique has been evaluated by conducting the simulation experiments for the two parameters—call blocking and handoff failures. Also, a comparison of the proposed model with an earlier model has been carried out to estimate the effectiveness of the proposed technique. Experimental results reveal that the proposed technique performs better and is more realistic as well.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Md. Baitul Al Sadi ◽  
Afsana Nadia

Usually, the number of users within a cell in a mobile cellular network is considered infinite; hence,M/M/n/kmodel is appropriate for new originated traffic, but the number of ongoing calls around a cell is always finite. Hence, the traffic model of handoff call will beM/M/n/k/N. In this paper, aK-dimensional traffic model of a mobile cellular network is proposed using the combination of limited and unlimited users case. A new call admission scheme (CAS) is proposed based on both thinning scheme and fading condition. The fading condition of the wireless channel access to a handoff call is prioritized compared to newly originated calls.


Sign in / Sign up

Export Citation Format

Share Document