Embedded Vision-Guided 3-D Tracking Control for Robotic Fish

2016 ◽  
Vol 63 (1) ◽  
pp. 355-363 ◽  
Author(s):  
Junzhi Yu ◽  
Feihu Sun ◽  
De Xu ◽  
Min Tan
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Junzhi Yu ◽  
Kai Wang ◽  
Min Tan ◽  
Jianwei Zhang

This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.


Sign in / Sign up

Export Citation Format

Share Document