control surfaces
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 114)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Christopher Reinbold ◽  
Christian Breitsamter ◽  
Kaare Sørensen
Keyword(s):  

2022 ◽  
Author(s):  
Kensuke Soneda ◽  
Natsuki Tsushima ◽  
Tomohiro Yokozeki

Author(s):  
Carlos Cabaleiro de la Hoz ◽  
Marco Fioriti

Flight control surfaces guarantee a safe and precise control of the aircraft. As a result, hinge moments are generated. These moments need to be estimated in order to properly size the aircraft actuators. Control surfaces include the ailerons, rudder, elevator, flaps, slats, and spoilers, and they are moved by electric or hydraulic actuators. Actuator sizing is the key when comparing different flight control system architectures. This fact becomes even more important when developing more-electric aircraft. Hinge moments need to be estimated so that the actuators can be properly sized and their effects on the overall aircraft design are measured. Hinge moments are difficult to estimate on the early stages of the design process due to the large number of required input. Detailed information about the airfoil, wing surfaces, control surfaces, and actuators is needed but yet not known on early design phases. The objective of this paper is to propose a new methodology for flight control system sizing, including mass and power estimation. A surrogate model for the hinge moment estimation is also proposed and used. The main advantage of this new methodology is that all the components and actuators can be properly sized instead of just having overall system results. The whole system can now be sized more in detail during the preliminary design process, which allows to have a more reliable estimation and to perform systems installation analysis. Results show a reliable system mass estimation similar to the results obtained with other known methods and also providing the weight for each component individually.


2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Praveen Krishna Veerasubramanian ◽  
Victor C. Joe ◽  
Wendy F. Liu ◽  
Timothy L. Downing

Macrophages are innate immune cells that help wounds heal. Here, we study the potential immunomodulatory effects of negative-pressure wound therapy (NPWT) materials on the macrophage inflammatory response. We compared the effects of two materials, Granufoam™ (GF) and Veraflo Cleanse™ (VC), on macrophage function in vitro. We find that both materials cause reduced expression of inflammatory genes, such as TNF and IL1B, in human macrophages stimulated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFNγ). Relative to adherent glass control surfaces, VC discourages macrophage adhesion and spreading, and may potentially sequester LPS/IFNγ and cytokines that the cells produce. GF, on the other hand, was less suppressive of inflammation, supported macrophage adhesion and spreading better than VC, and sequestered lesser quantities of LPS/IFNγ in comparison to VC. The control dressing material cotton gauze (CT) was also immunosuppressive, capable of TNF-α retention and LPS/IFNγ sequestration. Our findings suggest that NPWT material interactions with cells, as well as soluble factors including cytokines and LPS, can modulate the immune response, independent of vacuum application. We have also established methodological strategies for studying NPWT materials and reveal the potential utility of cell-based in vitro studies for elucidating biological effects of NPWT materials.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8459
Author(s):  
Zeyang Zhou ◽  
Jun Huang

With the continuous development of advanced fighters towards tailless and flying wing layouts, diverse control surfaces have become the mainstream design. To study the influence of spoiler control surface on the radar cross-section (RCS) of a tailless fighter, a calculation method is presented. The deflection angle of the spoiler is controlled by the fixed mode, linear mode, and smooth mode. The results show that the opening action of the spoiler will break the original stealth characteristics of the aircraft at the key azimuth angles of the head and tail. As the elevation angle increases, this adverse effect will spread to the side. The influence of the different dynamic deflection modes of the spoiler on the aircraft RCS is analyzed. Compared with the linear dynamic deflection mode, the smooth dynamic deflection mode is conducive to the reduction in the average RCS at the given head azimuth. The presented method is effective to study the influence of the spoiler deflection on the electromagnetic scattering characteristics of the tailless aircraft.


Author(s):  
E Javanmard ◽  
Sh Mansoorzadeh ◽  
A Pishevar ◽  
J A Mehr

Determination of hydrodynamic coefficients is a vital part of predicting the dynamic behavior of an Autonomous Underwater Vehicle (AUV). The aim of the present study was to determine the drag and lift related hydrodynamic coefficients of a research AUV, using Computational and Experimental Fluid Dynamics methods. Experimental tests were carried out at AUV speed of 1.5 m s-1 for two general cases: I. AUV without control surfaces (Hull) at various angles of attack in order to calculate Hull related hydrodynamic coefficients and II. AUV with control surfaces at zero angle of attack but in different stern angles to calculate hydrodynamic coefficients related to control surfaces. All the experiments carried out in a towing tank were also simulated by a commercial computational fluid dynamics (CFD) code. The hydrodynamic coefficients obtained from the numerical simulations were in close agreement with those obtained from the experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ping Wei ◽  
Wenrong Yan ◽  
Shoufa Wang ◽  
Xin Yu

The numerical model of supercavitating flow field was established based on multiphase model, cavitation model, and turbulence model. The model was employed to simulate the supercavitation flow for the supercavitating vehicle with two types of control surfaces: bow rudder and stern rudder. The influence of both control surfaces on the supercavity shape and rudder effectiveness is compared under the different rudder angles (0-12°), and the effectiveness and the influences on supercavities of bow rudder and stern rudder were explored according to the numerical research results. From the research results, the following conclusions can be drawn: (1) the bow rudders have stable rudder effectiveness and available rudder angle, and the bow rudders also have significant influence on supercavities’ shape. (2) By contrast with the bow rudder, stern rudders’ effectiveness is difficult to predict accurately, and the phenomenon of stalling will occur when stern rudders’ rudder angle exceeds 6°; however, there is almost no influence of stern rudders on supercavities. (3) The bow and stern rudders joint control mode must take the influence on supercavities’ shape and the accuracy of control force’s forecasting into account at the same time. The research is helpful to the optimizing of superhigh-speed vehicles and the design of control modes.


Sign in / Sign up

Export Citation Format

Share Document