Dual-Server Public-Key Encryption with Keyword Search for Secure Cloud Storage

Author(s):  
Rongmao Chen ◽  
Yi Mu ◽  
Guomin Yang ◽  
Fuchun Guo ◽  
Xiaofen Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhenwei Chen ◽  
Axin Wu ◽  
Yifei Li ◽  
Qixuan Xing ◽  
Shengling Geng

The emergence of the cloud storage has brought great convenience to people’s life. Many individuals and enterprises have delivered a large amount of data to the third-party server for storage. Thus, the privacy protection of data retrieved by the user needs to be guaranteed. Searchable encryption technology for the cloud environment is adopted to ensure that the user information is secure with retrieving data. However, most schemes only support single-keyword search and do not support file updates, which limit the flexibility of the scheme. To eliminate these problems, we propose a blockchain-enabled public key encryption scheme with multi-keyword search (BPKEMS), and our scheme supports file updates. In addition, smart contract is used to ensure the fairness of transactions between data owner and user without introducing a third party. At the data storage stage, our scheme realizes the verifiability by numbering the files, which ensures that the ciphertext received by the user is complete. In terms of security and performance, our scheme is secure against inside keyword guessing attacks (KGAs) and has better computation overhead than other related schemes.


Information ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 272 ◽  
Author(s):  
Yu Zhang ◽  
Yin Li ◽  
Yifan Wang

Public key encryption with disjunctive keyword search (PEDK) is a public key encryption scheme that allows disjunctive keyword search over encrypted data without decryption. This kind of scheme is crucial to cloud storage and has received a lot of attention in recent years. However, the efficiency of the previous scheme is limited due to the selection of a less efficient converting method which is used to change query and index keywords into a vector space model. To address this issue, we design a novel converting approach with better performance, and give two adaptively secure PEDK schemes based on this method. The first one is built on an efficient inner product encryption scheme with less searching time, and the second one is constructed over composite order bilinear groups with higher efficiency on index and trapdoor construction. The theoretical analysis and experiment results verify that our schemes are more efficient in time and space complexity as well as more suitable for the mobile cloud setting compared with the state-of-art schemes.


Sign in / Sign up

Export Citation Format

Share Document