Spatio-Temporal Knowledge Transfer for Urban Crowd Flow Prediction via Deep Attentive Adaptation Networks

Author(s):  
Senzhang Wang ◽  
Hao Miao ◽  
Jiyue Li ◽  
Jiannong Cao
Author(s):  
Shen Fang ◽  
Veronique Prinet ◽  
Jianlong Chang ◽  
Michael Werman ◽  
Chunxia Zhang ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 175159-175165
Author(s):  
Lablack Mourad ◽  
Heng Qi ◽  
Yanming Shen ◽  
Baocai Yin

2013 ◽  
Vol 68 (8) ◽  
pp. 1810-1818 ◽  
Author(s):  
M. Fencl ◽  
J. Rieckermann ◽  
M. Schleiss ◽  
D. Stránský ◽  
V. Bareš

The ability to predict the runoff response of an urban catchment to rainfall is crucial for managing drainage systems effectively and controlling discharges from urban areas. In this paper we assess the potential of commercial microwave links (MWL) to capture the spatio-temporal rainfall dynamics and thus improve urban rainfall-runoff modelling. Specifically, we perform numerical experiments with virtual rainfall fields and compare the results of MWL rainfall reconstructions to those of rain gauge (RG) observations. In a case study, we are able to show that MWL networks in urban areas are sufficiently dense to provide good information on spatio-temporal rainfall variability and can thus considerably improve pipe flow prediction, even in small subcatchments. In addition, the better spatial coverage also improves the control of discharges from urban areas. This is especially beneficial for heavy rainfall, which usually has a high spatial variability that cannot be accurately captured by RG point measurements.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-21
Author(s):  
He Li ◽  
Xuejiao Li ◽  
Liangcai Su ◽  
Duo Jin ◽  
Jianbin Huang ◽  
...  

Traffic flow prediction is the upstream problem of path planning, intelligent transportation system, and other tasks. Many studies have been carried out on the traffic flow prediction of the spatio-temporal network, but the effects of spatio-temporal flexibility (historical data of the same type of time intervals in the same location will change flexibly) and spatio-temporal correlation (different road conditions have different effects at different times) have not been considered at the same time. We propose the Deep Spatio-temporal Adaptive 3D Convolution Neural Network (ST-A3DNet), which is a new scheme to solve both spatio-temporal correlation and flexibility, and consider spatio-temporal complexity (complex external factors, such as weather and holidays). Different from other traffic forecasting models, ST-A3DNet captures the spatio-temporal relationship at the same time through the Adaptive 3D convolution module, assigns different weights flexibly according to the influence of historical data, and obtains the impact of external factors on the flow through the ex-mask module. Considering the holidays and weather conditions, we train our model for experiments in Xi’an and Chengdu. We evaluate the ST-A3DNet and the results show that we have better results than the other 11 baselines.


Sign in / Sign up

Export Citation Format

Share Document