rain gauge
Recently Published Documents


TOTAL DOCUMENTS

1682
(FIVE YEARS 586)

H-INDEX

71
(FIVE YEARS 11)

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 91-104
Author(s):  
BIKRAM SINGH ◽  
ROHIT THAPLIYAL

Cloudburst is an extreme weather event characterised by the occurrence of a large amount of rainfall over a small area within a short span of time with a rainfall of 100 mm or more in one hour. It is responsible for flash flood, inundation of low lying areas and landslides in hills causing extensive damages to life and property. During monsoon season 2017 five number of cloudburst events are observed over Uttarakhand and analysed. Self Recording Rain Gauge (SRRG) and 15 minutes interval data from the newly installed General Packet Radio Service (GPRS) based Automatic Weather Station (AWS) are able to capture the cloudburst events over some areas in Uttarakhand. In this paper, an attempt has been made to find out the significant synoptic and thermodynamic conditions associated with the occurrence of the cloudburst events in Uttarakhand. These 5 cases of cloudburst events that are captured during the month of June, July and August 2017 in Uttarakhand are studied in detail. Synoptically, it is observed that the existence of trough at mean sea level from Punjab to head Bay of Bengal running close to Uttarakhand, the movement of Western Disturbance over north Pakistan and adjoining Jammu & Kashmir and existence of cyclonic circulation over north Rajasthan and neighbourhood are favourable conditions. Also, the presence of strong south-westerly wind flow from the Arabian Sea across West Rajasthan and Haryana on upper air charts are found during these events. Thermodynamically, the Convective Available Potential Energy (CAPE) is found to be high (more than 1100 J/Kg) during most of the cases and vertically integrated precipitable water content (PWC) is more than 55mm. The GPRS based AWS system can help in prediction of the cloud burst event over the specified location with a lead time upto half to one hour in association with radar products.  


2022 ◽  
Vol 8 (1) ◽  
pp. 163-170
Author(s):  
Ravidho Ramadhan ◽  
Marzuki Marzuki ◽  
Helmi Yusnaini ◽  
Ayu Putri Ningsih ◽  
Hiroyuki Hashiguchi ◽  
...  

Accurate satellite precipitation estimates over areas of complex topography are still challenging, while such accuracy is of importance to the adoption of satellite data for hydrological applications. This study evaluated the ability of Integrated Multi-satellitE Retrievals for GPM -Final (IMERG) V06 product to observe the extreme rainfall over a mountainous area of Sumatra Island. Fifteen years of optical rain gauge (ORG) observation at Kototabang, West Sumatra, Indonesia (100.32°E, 0.20°S, 865 m above sea level), were used as reference surface measurement. The performance of IMERG-F was evaluated using 13 extreme rain indexes formulated by the Expert Team on Climate Change Detection and Indices (ETCCDI). The IMERG-F overestimated the values of all precipitation amount-based indices (PRCPTOT, R85P, R95P, and R99P), three precipitation frequency-based indices (R1mm, R10mm, R20mm), one precipitation duration-based indices (CWD), and one precipitation intensity-based indices (RX5day). Furthermore, the IMERG-F underestimated the values of precipitation frequency-based indices (R50mm), one precipitation duration-based indices (CDD), one precipitation intensity-based indices (SDII). In terms of correlation, only five indexes have a correlation coefficient (R) > 0.5, consistent with Kling–Gupta Efficiency (KGE) value. These results confirm the need to improve the accuracy of the IMERG-F data in mountainous areas.


2022 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Hanyong Lee ◽  
Min Suh Chae ◽  
Jong-Yoon Park ◽  
Kyoung Jae Lim ◽  
Youn Shik Park

Changes in rainfall pattern and land use have caused considerable impacts on the hydrological behavior of watersheds; a Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to simulate such variations. The L-THIA model defines curve number according to the land use and hydrological soil group before calculating the direct runoff based on the amount of rainfall, making it a convenient method of analysis. Recently, a method was proposed to estimate baseflow using this model, which may be used to estimate the overall streamflow. Given that this model considers the spatial distribution of land use and hydrological soil groups and must use rainfall data at multiple positions, it requires the usage of a geographical information system (GIS). Therefore, a model that estimates streamflow using land use maps, hydrologic soil group maps, and rain gauge station maps in QGIS, a popular GIS software, was developed. This model was tested in 15 watersheds.


2022 ◽  
pp. 1-60

Abstract Over the recent decades, Extreme Precipitation Events (EPE) have become more frequent over the Sahel. Their properties, however, have so far received little attention. In this study the spatial distribution, intensity, seasonality and interannual variability of EPEs are examined, using both a reference dataset, based on a high-density rain-gauge network over Burkina Faso and 24 precipitation gridded datasets. The gridded datasets are evaluated in depth over Burkina Faso while their commonalities are used to document the EPE properties over the Sahel. EPEs are defined as the occurrence of daily-accumulated precipitation exceeding the all-day 99th percentile over a 1°x1° pixel. Over Burkina Faso, this percentile ranges between 21 and 33 mm day-1. The reference dataset show that EPEs occur in phase with the West African monsoon annual cycle, more frequently during the monsoon core season and during wet years. These results are consistent among the gridded datasets over Burkina Faso but also over the wider Sahel. The gridded datasets exhibit a wide diversity of skills when compared to the Burkinabe reference. The Global Precipitation Climatology Centre Full Data Daily version 1 (GPCC-FDDv1) and the Global Satellite Mapping of Precipitation gauge Reanalysis version 6.0 (GSMaP-gauge-RNL v6.0) are the only products that properly reproduce all of the EPE features examined in this work. The datasets using a combination of microwave and infrared measurements are prone to overestimate the EPE intensity, while infrared-only products generally underestimate it. Their calibrated versions perform than their uncalibrated (near-real-time) versions. This study finally emphasizes that the lack of rain-gauge data availability over the whole Sahel strongly impedes our ability to gain insights in EPE properties.


2022 ◽  
Vol 14 (2) ◽  
pp. 261
Author(s):  
Zhi-Weng Chua ◽  
Yuriy Kuleshov ◽  
Andrew B. Watkins ◽  
Suelynn Choy ◽  
Chayn Sun

Satellites offer a way of estimating rainfall away from rain gauges which can be utilised to overcome the limitations imposed by gauge density on traditional rain gauge analyses. In this study, Australian station data along with the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) and the Bureau of Meteorology’s (BOM) Australian Gridded Climate Dataset (AGCD) rainfall analysis are combined to develop an improved satellite-gauge rainfall analysis over Australia that uses the strengths of the respective data sources. We investigated a variety of correction and blending methods with the aim of identifying the optimal blended dataset. The correction methods investigated were linear corrections to totals and anomalies, in addition to quantile-to-quantile matching. The blending methods tested used weights based on the error variance to MSWEP (Multi-Source Weighted Ensemble Product), distance to the closest gauge, and the error from a triple collocation analysis to ERA5 and Soil Moisture to Rain. A trade-off between away-from- and at-station performances was found, meaning there was a complementary nature between specific correction and blending methods. The most high-performance dataset was one corrected linearly to totals and subsequently blended to AGCD using an inverse error variance technique. This dataset demonstrated improved accuracy over its previous version, largely rectifying erroneous patches of excessive rainfall. Its modular use of individual datasets leads to potential applicability in other regions of the world.


2022 ◽  
Vol 30 (1) ◽  
pp. 319-342
Author(s):  
Zun Liang Chuan ◽  
Wan Nur Syahidah Wan Yusoff ◽  
Azlyna Senawi ◽  
Mohd Romlay Mohd Akramin ◽  
Soo-Fen Fam ◽  
...  

Descriptive data mining has been widely applied in hydrology as the regionalisation algorithms to identify the statistically homogeneous rainfall regions. However, previous studies employed regionalisation algorithms, namely agglomerative hierarchical and non-hierarchical regionalisation algorithms requiring post-processing techniques to validate and interpret the analysis results. The main objective of this study is to investigate the effectiveness of the automated agglomerative hierarchical and non-hierarchical regionalisation algorithms in identifying the homogeneous rainfall regions based on a new statistically significant difference regionalised feature set. To pursue this objective, this study collected 20 historical monthly rainfall time-series data from the rain gauge stations located in the Kuantan district. In practice, these 20 rain gauge stations can be categorised into two statistically homogeneous rainfall regions, namely distinct spatial and temporal variability in the rainfall amounts. The results of the analysis show that Forgy K-means non-hierarchical (FKNH), Hartigan- Wong K-means non-hierarchical (HKNH), and Lloyd K-means non-hierarchical (LKNH) regionalisation algorithms are superior to other automated agglomerative hierarchical and non-hierarchical regionalisation algorithms. Furthermore, FKNH, HKNH, and LKNH yielded the highest regionalisation accuracy compared to other automated agglomerative hierarchical and non-hierarchical regionalisation algorithms. Based on the regionalisation results yielded in this study, the reliability and accuracy that assessed the risk of extreme hydro-meteorological events for the Kuantan district can be improved. In particular, the regional quantile estimates can provide a more accurate estimation compared to at-site quantile estimates using an appropriate statistical distribution.


2022 ◽  
Vol 170 (1-2) ◽  
Author(s):  
Dario Camuffo ◽  
Francesca Becherini ◽  
Antonio della Valle

Urban Climate ◽  
2022 ◽  
Vol 41 ◽  
pp. 101029
Author(s):  
K. Sunilkumar ◽  
Subrata Kumar Das ◽  
Prasad Kalekar ◽  
Yogesh Kolte ◽  
U.V. MuraliKrishna ◽  
...  

2022 ◽  
pp. 510-538
Author(s):  
Ismail Elhassnaoui ◽  
Zineb Moumen ◽  
Hicham Ezzine ◽  
Marwane Bel-lahcen ◽  
Ahmed Bouziane ◽  
...  

In this chapter, the authors propose a novel statistical model with a residual correction of downscaling coarse precipitation TRMM 3B43 product. The presented study was carried out over Morocco, and the objective is to improve statistical downscaling for TRMM 3B43 products using a machine learning algorithm. Indeed, the statistical model is based on the Transformed Soil Adjusted Vegetation Index (TSAVI), elevation, and distance from the sea. TSAVI was retrieved using the quantile regression method. Stepwise regression was implemented with the minimization of the Akaike information criterion and Mallows' Cp indicator. The model validation is performed using ten in-situ measurements from rain gauge stations (the most available data). The result shows that the model presents the best fit of the TRMM 3B43 product and good accuracy on estimating precipitation at 1km according to 𝑅2, RMSE, bias, and MAE. In addition, TSAVI improved the model accuracy in the humid bioclimatic stage and in the Saharan region to some extent due to its capacity to reduce soil brightness.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 63
Author(s):  
Marzuki Marzuki ◽  
Helmi Yusnaini ◽  
Ravidho Ramadhan ◽  
Fredolin Tangang ◽  
Abdul Azim Bin Amirudin ◽  
...  

In this study we investigate the characteristics of the diurnal precipitation cycle including the Madden–Julian oscillation (MJO) and seasonal influences over a mountainous area in Sumatra Island based on the in situ measurement of precipitation using the optical rain gauge (ORG). For comparison with ORG data, the characteristics based on the Global Precipitation Measurement (GPM) mission (IMERG) and Weather Research and Forecasting (WRF) simulations were also investigated. Fifteen years of ORG data over a mountainous area of Sumatra, namely, at Kototabang (100.32° E, 0.20° S), were analyzed to obtain the characteristics of the diurnal cycle of precipitation in this region. The diurnal cycle of precipitation presented a single peak in the late afternoon, and the peak time difference was closely related to the rain event duration. The MJO acts to modulate the diurnal amplitude but not the diurnal phase. A high precipitation amount (PA) and frequency (PF) were observed during phases 2, 3, and 4, along with an increase in the number of longer-duration rain events, but the diurnal phase was similar in all MJO phases. In terms of season, the highest PA and PF values were observed during pre-southwest and pre-northeast monsoon seasons. WRF simulation reproduced the diurnal phase correctly and more realistically than the IMERG products. However, it largely overestimated the amplitude of the diurnal cycle in comparison with ORG. These disagreements could be related to the resolution and quality of IMERG and WRF data.


Sign in / Sign up

Export Citation Format

Share Document