scholarly journals Information Source Detection in the SIR Model: A Sample-Path-Based Approach

2016 ◽  
Vol 24 (1) ◽  
pp. 408-421 ◽  
Author(s):  
Kai Zhu ◽  
Lei Ying
2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Daniel A. Vasco

A Bayesian Markov chain Monte Carlo method is used to infer parameters for an open stochastic epidemiological model: the Markovian susceptible-infected-recovered (SIR) model, which is suitable for modeling and simulating recurrent epidemics. This allows exploring two major problems of inference appearing in many mechanistic population models. First, trajectories of these processes are often only partly observed. For example, during an epidemic the transmission process is only partly observable: one cannot record infection times. Therefore, one only records cases (infections) as the observations. As a result some means of imputing or reconstructing individuals in the susceptible cases class must be accomplished. Second, the official reporting of observations (cases in epidemiology) is typically done not as they are actually recorded but at some temporal interval over which they have been aggregated. To address these issues, this paper investigates the following problems. Parameter inference for a perfectly sampled open Markovian SIR is first considered. Next inference for an imperfectly observed sample path of the system is studied. Although this second problem has been solved for the case of closed epidemics, it has proven quite difficult for the case of open recurrent epidemics. Lastly, application of the statistical theory is made to measles and pertussis epidemic time series data from 60 UK cities.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 587
Author(s):  
Taewon Min ◽  
Changhee Joo

We investigate the problem of source detection in information spreading throughout a densely-connected network. Previous works have been developed mostly for tree networks or applied the tree-network results to non-tree networks assuming that the infection occurs in the breadth first manner. However, these approaches result in low detection performance in densely-connected networks, since there is a substantial number of nodes that are infected through the non-shortest path. In this work, we take a two-step approach to the source detection problem in densely-connected networks. By introducing the concept of detour nodes, we first sample trees that the infection process likely follows and effectively compare the probability of the sampled trees. Our solution has low complexity of O ( n 2 log n ) , where n denotes the number of infected nodes, and thus can be applied to large-scale networks. Through extensive simulations including practical networks of the Internet autonomous system and power grid, we evaluate our solution in comparison with two well-known previous schemes and show that it achieves the best performance in densely-connected networks.


Sign in / Sign up

Export Citation Format

Share Document