Deep Reinforcement Learning for Load Shedding Against Short-Term Voltage Instability in Large Power Systems

Author(s):  
Jingyi Zhang ◽  
Yonghong Luo ◽  
Boya Wang ◽  
Chao Lu ◽  
Jennie Si ◽  
...  
2020 ◽  
Vol 209 ◽  
pp. 07014
Author(s):  
Tulkin Gayibov ◽  
Bekzod Pulatov

Optimal planning of short-term modes of power systems is a complex nonlinear programming problem with many simple, functional and integral constraints in the form of equalities and inequalities. Especially, the presence of integral constraints causes significant difficulties in solving of such problem. Since, under such constraints, the modes of power system in separate time intervals of the considered planning period become dependent on the values of the parameters in other intervals. Accordingly, it becomes impossible to obtain the optimal mode plan as the results of separate optimization for individual time intervals of the period under consideration. And the simultaneous solution of the problem for all time intervals of the planning period in the conditions of large power systems is associated with additional difficulties in ensuring the reliability of convergence of the iterative computational process. In this regard, the issues of improving the methods and algorithms for optimization of short-term modes of power systems containing thermal and large hydroelectric power plants with reservoirs, in which water consumption is regulated in the short-term planning period, remains as an important task. In this paper, we propose the effective algorithm for solving the problem under consideration, which makes it possible to quickly and reliably determine the optimal operating modes of the power system for the planned period. The results of research of effectiveness of this algorithm are presented on the example of optimal planning of daily mode of the power system, which contains two thermal and three hydraulic power plants..


2021 ◽  
Author(s):  
Vincenzo Di Giorgio ◽  
Roberto Langella ◽  
Alfredo Testa ◽  
Cristiano Martarelli

2018 ◽  
Vol 12 (11) ◽  
pp. 2530-2538 ◽  
Author(s):  
Javad Modarresi ◽  
Eskandar Gholipour ◽  
Amin Khodabakhshian

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 277 ◽  
Author(s):  
Yunhwan Lee ◽  
Hwachang Song

This study develops an analytical method for assessing the voltage stability margins of a decentralized load shedding scheme; it then examines the challenges related to the existing load shedding scheme. It also presents a practical application for implementing the proposed method, based on the synchrophasor measurement technology in modern power grid operations. By applying the concept of a continuously-computed voltage stability margin index to the configuration of the Thévenin equivalent system, the maximum transfer power could be used as an index to monitor the voltage instability phenomenon and thus determine the required load shedding amount. Thus, the calculated voltage stability margin might be a useful index for system operators in the critical decision-making process of load shedding. Dynamic simulations are performed on real Korean power systems as case studies. Simulation results, when comparing the existing and proposed methods, showed that there was a considerable reduction in the amount of load shedding in the voltage instability scenario. This indicates that the synchrophasor measurement technology has a considerable effect on the proposed load shedding method. The simulation results have validated the performance of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document