An O[1] time algorithm for the 3D euclidean distance transform on the CRCW PRAM model

2003 ◽  
Vol 14 (10) ◽  
pp. 973-982 ◽  
Author(s):  
Yuh-Rau Wang ◽  
Shi-Jinn Horng
Author(s):  
XUEFENG LIANG ◽  
ARIJIT BISHNU ◽  
TETSUO ASANO

Most of the fingerprint matching techniques require extraction of minutiae that are ridge endings or bifurcations of ridge lines in a fingerprint image. Crucial to this step is either detecting ridges from the gray-level image or binarizing the image and then extracting the minutiae. In this work, we firstly exploit the property of almost equal width of ridges and valleys for binarization. Computing the width of arbitrary shapes is a nontrivial task. So, we estimate the width using Euclidean distance transform (EDT) and provide a near-linear time algorithm for binarization. Secondly, instead of using thinned binary images for minutiae extraction, we detect minutiae straightaway from the binarized fingerprint images using EDT. We also use EDT values to get rid of spurs and bridges in the fingerprint image. Unlike many other previous methods, our work depends minimally on arbitrary selection of parameters.


Author(s):  
Luis Fernando Segalla ◽  
Alexandre Zabot ◽  
Diogo Nardelli Siebert ◽  
Fabiano Wolf

Author(s):  
Kuryati Kipli ◽  
Mohammed Enamul Hoque ◽  
Lik Thai Lim ◽  
Tengku Mohd Afendi Zulcaffle ◽  
Siti Kudnie Sahari ◽  
...  

2018 ◽  
Author(s):  
Sebastian Daberdaku

Protein pockets and cavities usually coincide with the active sites of biological processes, and their identification is significant since it constitutes an important step for structure-based drug design and protein-ligand docking applications. This paper presents a novel purely geometric algorithm for the detection of ligand binding protein pockets and cavities based on the Euclidean Distance Transform (EDT). The EDT can be used to compute the Solvent-Excluded surface for any given probe sphere radius value at high resolutions and in a timely manner. The algorithm is adaptive to the specific candidate ligand: it computes two voxelised protein surfaces using two different probe sphere radii depending on the shape of the candidate ligand. The pocket regions consist of the voxels located between the two surfaces, which exhibit a certain minimum depth value from the outer surface. The distance map values computed by the EDT algorithm during the second surface computation can be used to elegantly determine the depth of each candidate pocket and to rank them accordingly. Cavities on the other hand, are identified by scanning the inside of the protein for voids. The algorithm determines and outputs the best k candidate pockets and cavities, i.e. the ones that are more likely to bind to the given ligand. The method was applied to a representative set of protein-ligand complexes and their corresponding unbound protein structures to evaluate its ligand binding site prediction capabilities, and was shown to outperform most of the previously developed purely geometric pocket and cavity search methods.


Sign in / Sign up

Export Citation Format

Share Document