Joint Optimization for Power Loss Reduction in Distribution Systems

2008 ◽  
Vol 23 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Dong Zhang ◽  
Zhengcai Fu ◽  
Liuchun Zhang
Author(s):  
Ahmed Mohamed Abdelbaset ◽  
AboulFotouh A. Mohamed ◽  
Essam Abou El-Zahab ◽  
M. A. Moustafa Hassan

<p><span>With the widespread of using distributed generation, the connection of DGs in the distribution system causes miscoordination between protective devices. This paper introduces the problems associated with recloser fuse miscoordination (RFM) in the presence of single and multiple DG in a radial distribution system. Two Multi objective optimization problems are presented. The first is based on technical impacts to determine the optimal size and location of DG considering system power loss reduction and enhancement the voltage profile with a certain constraints and the second is used for minimizing the operating time of all fuses and recloser with obtaining the optimum settings of fuse recloser coordination characteristics. Whale Optimizer algorithm (WOA) emulated RFM as an optimization problem. The performance of the proposed methodology is applied to the standard IEEE 33 node test system. The results show the robustness of the proposed algorithm for solving the RFM problem with achieving system power loss reduction and voltage profile enhancement.</span></p>


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tung Tran The ◽  
Dieu Vo Ngoc ◽  
Nguyen Tran Anh

This paper proposes a chaotic stochastic fractal search algorithm (CSFSA) method to solve the reconfiguration problem for minimizing the power loss and improving the voltage profile in distribution systems. The proposed method is a metaheuristic method developed for overcoming the weaknesses of the conventional SFSA with two processes of diffuse and update. In the first process, new points will be created from the initial points by the Gaussian walk. For the second one, SFSA will update better positions for the particles obtained in the diffusion process. In addition, this study has also integrated the chaos theory to improve the SFSA diffusion process as well as increase the rate of convergence and the ability to find the optimal solution. The effectiveness of the proposed CSFSA has been verified on the 33-bus, 84-bus, 119-bus, and 136-bus distribution systems. The obtained results from the test cases by CSFSA have been verified to those from other natural methods in the literature. The result comparison has indicated that the proposed method is more effective than many other methods for the test systems in terms of power loss reduction and voltage profile improvement. Therefore, the proposed CSFSA can be a very promising potential method for solving the reconfiguration problem in distribution systems.


Sign in / Sign up

Export Citation Format

Share Document