stochastic fractal search algorithm
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 4)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-36
Author(s):  
Le Chi Kien ◽  
Thuan Thanh Nguyen ◽  
Bach Hoang Dinh ◽  
Thang Trung Nguyen

In this paper, a proposed modified stochastic fractal search algorithm (MSFS) is applied to find the most appropriate site and size of capacitor banks for distribution systems with 33, 69, and 85 buses. Two single-objective functions are considered to be reduction of power loss and reduction of total cost of energy loss and capacitor investment while satisfying limit of capacitors, limit of conductor, and power balance of the systems. MSFS was developed by performing three new mechanisms including new diffusion mechanism and two new update mechanisms on the conventional stochastic fractal search algorithm (SFS). As a result, MSFS can reduce 0.002%, 0.003%, and 0.18% of the total power loss from SFS for the three study systems. As compared to other methods, MSFS can reduce power loss from 0.07% to 3.98% for the first system, from 3.7% to 7.3% for the second system, and from 0.92% to 6.98% for the third system. For the reduction of total cost, the improvement level of the proposed method over SFS and two other methods is more significant. It is 0.03%, 1.22%, and 5.76% for the second system and 2.31%, 0.87%, and 3.77% for the third system. It is emphasized that the proposed method can find the global optimal solutions for all study cases while SFS was still implementing search process nearby or far away from the solutions. Furthermore, MSFS can converge to the best solutions much faster than these compared methods. Consequently, it can be concluded that the proposed method is very effective for finding the best location and size of added capacitors in distribution power systems.


2020 ◽  
Vol 7 (12) ◽  
pp. 583-591
Author(s):  
Hien Thi Thu DINH ◽  
Ngoc Nguyen Mong CHU ◽  
Van Hong TRAN ◽  
Du Van NGUYEN ◽  
Quyen Le Hoang Thuy To NGUYEN

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fran Sérgio Lobato ◽  
Gustavo Barbosa Libotte ◽  
Gustavo Mendes Platt

Traditionally, the identification of parameters in the formulation and solution of inverse problems considers that models, variables, and mathematical parameters are free of uncertainties. This aspect simplifies the estimation process, but does not consider the influence of relatively small changes in the design variables in terms of the objective function. In this work, the SIDR (Susceptible, Infected, Dead, and Recovered) model is used to simulate the dynamic behavior of the novel coronavirus disease (COVID-19), and its parameters are estimated by formulating a robust inverse problem, that is, considering the sensitivity of design variables. For this purpose, a robust multiobjective optimization problem is formulated, considering the minimization of uncertainties associated with the estimation process and the maximization of the robustness parameter. To solve this problem, the Multiobjective Stochastic Fractal Search algorithm is associated with the Effective Mean concept for the evaluation of robustness. The results obtained considering real data of the epidemic in China demonstrate that the evaluation of the sensitivity of the design variables can provide more reliable results.


Sign in / Sign up

Export Citation Format

Share Document