scholarly journals Interval State Estimation With Uncertainty of Distributed Generation and Line Parameters in Unbalanced Distribution Systems

2020 ◽  
Vol 35 (1) ◽  
pp. 762-772 ◽  
Author(s):  
Ying Zhang ◽  
Jianhui Wang ◽  
Zhengshuo Li
Author(s):  
Franky Aldemar Bermúdez Calderón ◽  
◽  
Hernando Díaz Morales ◽  
Eduardo Alirio Mojican Nava ◽  
◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7933
Author(s):  
Nikolaos M. Manousakis ◽  
George N. Korres

In this paper, a weighted least square (WLS) state estimation algorithm with equality constraints is proposed for smart distribution networks embedded with microgrids. Since only a limited number of real-time measurements are available at the primary or secondary substations and distributed generation sites, load estimates at unmeasured buses remote from the substations are needed to execute state estimation. The load information can be obtained by forecasted and historical data or smart real-time meters. The proposed algorithms can be applied in either grid-connected or islanded operation mode and can efficiently identify breaker status errors at the main substations and feeders, where sufficient measurement redundancy exists. The impact of the accuracy of real and pseudo-measurements on the estimated bus voltages is tested with a 55-bus distribution network including distributed generation.


2021 ◽  
Vol 13 (6) ◽  
pp. 3308
Author(s):  
Chandrasekaran Venkatesan ◽  
Raju Kannadasan ◽  
Mohammed H. Alsharif ◽  
Mun-Kyeom Kim ◽  
Jamel Nebhen

Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend on selecting a suitable number of CBs/DGs and their volume along with the finest location. This work proposes applying a hybrid enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO) algorithm for optimal placement and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves. On the other hand, PSO is a swarm-based metaheuristic optimization algorithm that finds the optimal solution to a problem through the movement of the particles. The advantages of both techniques are utilized to acquire mutual benefits, i.e., the exploration ability of the EGWO and the exploitation ability of the PSO. The proposed hybrid method has a high convergence speed and is not trapped in local optimal. Using this hybrid method, technical, economic, and environmental advantages are enhanced using multiobjective functions (MOF) such as minimizing active power losses, voltage deviation index (VDI), the total cost of electrical energy, and total emissions from generation sources and enhancing the voltage stability index (VSI). Six different operational cases are considered and carried out on two standard distribution systems, namely, IEEE 33- and 69-bus RDSs, to demonstrate the proposed scheme’s effectiveness extensively. The simulated results are compared with existing optimization algorithms. From the obtained results, it is observed that the proposed EGWO-PSO gives distinguished enhancements in multiobjective optimization of different conflicting objective functions and high-level performance with global optimal values.


Sign in / Sign up

Export Citation Format

Share Document