scholarly journals Markov Decision Process-Based Resilience Enhancement for Distribution Systems: An Approximate Dynamic Programming Approach

2020 ◽  
Vol 11 (3) ◽  
pp. 2498-2510
Author(s):  
Chong Wang ◽  
Ping Ju ◽  
Shunbo Lei ◽  
Zhaoyu Wang ◽  
Feng Wu ◽  
...  
i-com ◽  
2020 ◽  
Vol 19 (3) ◽  
pp. 227-237
Author(s):  
Frédéric Logé ◽  
Erwan Le Pennec ◽  
Habiboulaye Amadou-Boubacar

Abstract Inefficient interaction such as long and/or repetitive questionnaires can be detrimental to user experience, which leads us to investigate the computation of an intelligent questionnaire for a prediction task. Given time and budget constraints (maximum q questions asked), this questionnaire will select adaptively the question sequence based on answers already given. Several use-cases with increased user and customer experience are given. The problem is framed as a Markov Decision Process and solved numerically with approximate dynamic programming, exploiting the hierarchical and episodic structure of the problem. The approach, evaluated on toy models and classic supervised learning datasets, outperforms two baselines: a decision tree with budget constraint and a model with q best features systematically asked. The online problem, quite critical for deployment seems to pose no particular issue, under the right exploration strategy. This setting is quite flexible and can incorporate easily initial available data and grouped questions.


2018 ◽  
Vol 34 (3) ◽  
pp. 381-405
Author(s):  
Ingeborg A. Bikker ◽  
Martijn R.K. Mes ◽  
Antoine Sauré ◽  
Richard J. Boucherie

AbstractWe study an online capacity planning problem in which arriving patients require a series of appointments at several departments, within a certain access time target.This research is motivated by a study of rehabilitation planning practices at the Sint Maartenskliniek hospital (the Netherlands). In practice, the prescribed treatments and activities are typically booked starting in the first available week, leaving no space for urgent patients who require a series of appointments at a short notice. This leads to the rescheduling of appointments or long access times for urgent patients, which has a negative effect on the quality of care and on patient satisfaction.We propose an approach for allocating capacity to patients at the moment of their arrival, in such a way that the total number of requests booked within their corresponding access time targets is maximized. The model considers online decision making regarding multi-priority, multi-appointment, and multi-resource capacity allocation. We formulate this problem as a Markov decision process (MDP) that takes into account the current patient schedule, and future arrivals. We develop an approximate dynamic programming (ADP) algorithm to obtain approximate optimal capacity allocation policies. We provide insights into the characteristics of the optimal policies and evaluate the performance of the resulting policies using simulation.


Sign in / Sign up

Export Citation Format

Share Document