scholarly journals Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services

2017 ◽  
Vol 8 (3) ◽  
pp. 1140-1153 ◽  
Author(s):  
Jin Tan ◽  
Yingchen Zhang
Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2326 ◽  
Author(s):  
Yuqing Yang ◽  
Stephen Bremner ◽  
Chris Menictas ◽  
Merlinde Kay

This paper presents a mixed receding horizon control (RHC) strategy for the optimal scheduling of a battery energy storage system (BESS) in a hybrid PV and wind power plant while satisfying multiple operational constraints. The overall optimisation problem was reformulated as a mixed-integer linear programming (MILP) problem, aimed at minimising the total operating cost of the entire system. The cost function of this MILP is composed of the profits of selling electricity, the cost of purchasing ancillary services for undersupply and oversupply, and the operation and maintenance cost of each component. To investigate the impacts of day-ahead and hour-ahead forecasting for battery optimisation, four forecasting methods, including persistence, Elman neural network, wavelet neural network and autoregressive integrated moving average (ARIMA), were applied for both day-ahead and hour-ahead forecasting. Numerical simulations demonstrated the significant increased efficiency of the proposed mixed RHC strategy, which improved the total operation profit by almost 29% in one year, in contrast to the day-ahead RHC strategy. Moreover, the simulation results also verified the significance of using more accurate forecasting techniques, where ARIMA can reduce the total operation cost by almost 5% during the whole year operation when compared to the persistence method as the benchmark.


Sign in / Sign up

Export Citation Format

Share Document