scholarly journals A Mixed Receding Horizon Control Strategy for Battery Energy Storage System Scheduling in a Hybrid PV and Wind Power Plant with Different Forecast Techniques

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2326 ◽  
Author(s):  
Yuqing Yang ◽  
Stephen Bremner ◽  
Chris Menictas ◽  
Merlinde Kay

This paper presents a mixed receding horizon control (RHC) strategy for the optimal scheduling of a battery energy storage system (BESS) in a hybrid PV and wind power plant while satisfying multiple operational constraints. The overall optimisation problem was reformulated as a mixed-integer linear programming (MILP) problem, aimed at minimising the total operating cost of the entire system. The cost function of this MILP is composed of the profits of selling electricity, the cost of purchasing ancillary services for undersupply and oversupply, and the operation and maintenance cost of each component. To investigate the impacts of day-ahead and hour-ahead forecasting for battery optimisation, four forecasting methods, including persistence, Elman neural network, wavelet neural network and autoregressive integrated moving average (ARIMA), were applied for both day-ahead and hour-ahead forecasting. Numerical simulations demonstrated the significant increased efficiency of the proposed mixed RHC strategy, which improved the total operation profit by almost 29% in one year, in contrast to the day-ahead RHC strategy. Moreover, the simulation results also verified the significance of using more accurate forecasting techniques, where ARIMA can reduce the total operation cost by almost 5% during the whole year operation when compared to the persistence method as the benchmark.

2021 ◽  
Vol 11 (1) ◽  
pp. 20-27
Author(s):  
Mykola Medykovskyi ◽  
◽  
Roman Melnyk ◽  

The article presents the resultsof mathematical modeling of the energy-dynamic processes of a wind farm which includes a battery energy storage system (BESS). The dependence between load capacity and energy generation capabilities of the active set of a wind power plant taking into account the energy capacity of BESS has been determined. A mathematical model of the BESS has been developed. The elaborated model is compared with two other models: a black box module and a model based on equivalent circuit model. The application of the developed model provides an opportunity to optimize the energy capacity of BESS for the specified parameters and modes of operation of the wind power plant. Using the obtained results expands the possibilities of the adequate management of energy-dynamic modes of energy systems with renewable energy sources, provides mitigation of transition processes in conditions of insufficient or excessive wind speeds and consumer loads.


Sign in / Sign up

Export Citation Format

Share Document