Human-Centered Trajectory Tracking Control for Autonomous Vehicles With Driver Cut-In Behavior Prediction

2019 ◽  
Vol 68 (9) ◽  
pp. 8461-8471 ◽  
Author(s):  
Yimin Chen ◽  
Chuan Hu ◽  
Junmin Wang
2021 ◽  
Author(s):  
Xuting Duan ◽  
Qi Wang ◽  
Daxin Tian ◽  
Jianshan Zhou ◽  
Jian Wang ◽  
...  

2021 ◽  
Vol 57 (1) ◽  
pp. 7-23
Author(s):  
Yuqiong Wang ◽  
Song Gao ◽  
Yuhai Wang ◽  
Pengwei Wang ◽  
Yingchao Zhou ◽  
...  

Autonomous vehicles are the most advanced intelligent vehicles and will play an important role in reducing traffic accidents, saving energy and reducing emission. Motion control for trajectory tracking is one of the core issues in the field of autonomous vehicle research. According to the characteristics of strong nonlinearity, uncertainty and chang-ing longitudinal velocity for autonomous vehicles at high speed steering condition, the robust trajectory tracking control is studied. Firstly, the vehicle system models are established and the novel target longitudinal velocity planning is carried out. This velocity planning method can not only ensure that the autonomous vehicle operates in a strong nonlinear coupling state in bend, but also easy to be constructed. Then, taking the lateral location deviation minimiz-ing to zero as the lateral control objective, a robust active disturbance rejection control path tracking controller is designed along with an extended state observer which can deal with the varying velocity and uncertain lateral dis-turbance effectively. Additionally, the feedforward-feedback control method is adopted to control the total tire torque, which is distributed according to the steering characteristics of the vehicle for additional yaw moment to enhance vehicle handing stability. Finally, the robustness of the proposed controller is evaluated under velocity-varying condi-tion and sudden lateral disturbance. The single-lane change maneuver and double-lane change maneuver under vary longitudinal velocity and different road adhesions are both simulated. The simulation results based on Matlab/Simulink show that the proposed controller can accurately observe the external disturbances and have good performance in trajectory tracking and handing stability. The maximum lateral error reduces by 0.18 meters compared with a vehicle that controlled by a feedback-feedforward path tracking controller in the single-lane change maneuver. The lateral deviation is still very small even in the double lane change case of abrupt curvature. It should be noted that our proposed control algorithm is simple and robust, thus provide great potential for engineering application.


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141876046 ◽  
Author(s):  
Tiago P Nascimento ◽  
Carlos Eduardo Trabuco Dórea ◽  
Luiz Marcos G Gonçalves

Trajectory tracking for autonomous vehicles is usually solved by designing control laws that make the vehicles track predetermined feasible trajectories based on the trajectory error. This type of approach suffers from the drawback that usually the vehicle dynamics exhibits complex nonlinear terms and significant uncertainties. Toward solving this problem, this work proposes a novel approach in trajectory tracking control for nonholonomic mobile robots. We use a nonlinear model predictive controller to track a given trajectory. The novelty is introduced by using a set of modifications in the robot model, cost function, and optimizer aiming to minimize the steady-state error rapidly. Results of simulations and experiments with real robots are presented and discussed verifying and validating the applicability of the proposed approach in nonholonomic mobile robots.


Sign in / Sign up

Export Citation Format

Share Document