Software reliability prediction using data abstraction and Random forest Algorithm

Author(s):  
Mayuri H. Molawade ◽  
Shashank. D. Joshi ◽  
Rohini Jadhav
2020 ◽  
Vol 15 (S359) ◽  
pp. 40-41
Author(s):  
L. M. Izuti Nakazono ◽  
C. Mendes de Oliveira ◽  
N. S. T. Hirata ◽  
S. Jeram ◽  
A. Gonzalez ◽  
...  

AbstractWe present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.


2007 ◽  
Vol 185 (2) ◽  
pp. 1120-1130 ◽  
Author(s):  
Shaoming Li ◽  
Qian Yin ◽  
Ping Guo ◽  
Michael R. Lyu

Author(s):  
Pradeep Kumar

Software reliability is a statistical measure of how well software operates with respect to its requirements. There are two related software engineering research issues about reliability requirements. The first issue is achieving the necessary reliability, i.e., choosing and employing appropriate software engineering techniques in system design and implementation. The second issue is the assessment of reliability as a method of assurance that precedes system deployment. In past few years, various software reliability models have been introduced. These models have been developed in response to the need of software engineers, system engineers and managers to quantify the concept of software reliability. This chapter on software reliability prediction using ANNs addresses three main issues: (1) analyze, manage, and improve the reliability of software products; (2) satisfy the customer needs for competitive price, on time delivery, and reliable software product; (3) determine the software release instance that is, when the software is good enough to release to the customer.


Sign in / Sign up

Export Citation Format

Share Document