Control of steady-state stability of 500 kV transmission lines in the National Electrical Networks of Kazakhstan using PMUs data

Author(s):  
K. Tokhtibakiev ◽  
A. Saukhimov ◽  
A. Bektimirov ◽  
M. Merekenov ◽  
K. Shubekova ◽  
...  
Author(s):  
Fredy Estuardo Tamayo Guzmán ◽  
Carlos Andrés Barrera-Singaña

Electrical power systems are exposed to several events that can cause unstable operation scenarios. This is due to improper operation of certain components. If an event occurs, the system must be designed to overcome that contingency, thus remaining in a permanent condition that must be evaluated in order to monitor and prevent a possible collapse of the system. An evaluation of steady state stability is proposed at this work based on the capacity curves of generators, transformers and transmission lines. These remarked curves provide information on the operation point of these elements, thus allowing the application of remedial actions. PowerFactory and Matlab are used to carry out the tool for monitoring the operation points after a contingency. The effectiveness of the developed tool is validated at the IEEE 39-bus power system model, where results shows that the functionalaty for different contingencies based on the operating conditions when the components of the power system are varied, cosnquently, the tool identifies cases that require actions at the operational level.


Vestnik IGEU ◽  
2020 ◽  
pp. 14-24
Author(s):  
V.P. Golov ◽  
A.V. Kalutskov ◽  
D.N. Kormilitsyn ◽  
O.S. Sukhanova

Currently there is a need to synchronize operation of the electric power system in the remote areas and increase of existing lines transmission capacity. The construction of new power transmission lines involves high economic expenditures. Well-known papers consider the issues of application of controlled series compensation devices only for long-distance power transmission lines with voltage of 500 kV and higher to increase the transmission capacity and the level of stability. The aim of the study is to increase the stability and the limit of the transmitted power when controlled series compensation devices are installed on 220 kV lines. It is necessary to develop a criterion of aperiodic steady-state stability of an electric power system with a 220 kV-controlled power transmission line. Methods of mathematical modeling of electric power system, the theory of long-distance power transmission lines and electromechanical transients, and methods of analyzing electric power system stability were used. A.M. Lyapunov’s first approximation method was used to develop a simplified mathematical model. We applied the developed software as a simulation tool. An analysis was carried out to study the influence of series compensation devices regulation coefficients on the aperiodic steady-state stability of the electric power system and the transmission capacity of 220 kV power transmission lines. A change in the modulus of voltage drop at the power transmission and the angle characteristics under the influence of the regulation coefficients of the series compensation device was revealed. A criterion of aperiodic steady-state stability has been developed for systems of this kind with controlled series compensation. It differs from traditional ones by considering the changes in the voltage drop in the power transmission and it allows more accurate estimation of the proximity to the stability threshold. An assessment of aperiodic steady-state stability according to the formulated criterion for an electric power system with a controlled series compensation device on a 220 kV line was obtained. The values of the control coefficients of the series compensation device have been determined. No violation of the steady-state stability occurs under the given values. The results can be used to solve the issues of increasing the transmission capacity of transmission lines to improve the stability of the system.


1968 ◽  
Vol 4 (1) ◽  
pp. 18-19 ◽  
Author(s):  
R.D. Jackson ◽  
B.W. Phillips

Sign in / Sign up

Export Citation Format

Share Document