Physical Layer Security Assisted 5G Network Security

Author(s):  
Fei Pan ◽  
Yixin Jiang ◽  
Hong Wen ◽  
Runfa Liao ◽  
Aidong Xu
2021 ◽  
Author(s):  
Carlos Natalino ◽  
Marco Schiano ◽  
Andrea Di Giglio ◽  
Marija Furdek

<div>The ongoing evolution of optical networks towards autonomous systems supporting high-performance services be-yond 5G requires advanced functionalities for automated security management. These functionalities need to support risk reduction, security diagnostics and incident remediation strategies. To cope with evolving security threat scenarios, security diagnostic approaches should be able to detect and identify the nature not only of existing attack techniques, but also those hitherto unknown or insufficiently represented. Machine Learning (ML)-based algorithms have been shown to perform well when identifying known attack types, but cannot guarantee precise identification of unknown attacks. This makes Root Cause Analysis (RCA) a crucial tool to enable timely attack response when human intervention is unavoidable.</div><div>We address these challenges by establishing an ML-based framework for security assessment and analyzing RCA alter-natives for physical-layer attacks. We first scrutinize different Network Management System (NMS) architectures and the corresponding ML-based security assessment functionalities. We then investigate the applicability of supervised and unsupervised learning (SL and UL) approaches for RCA and propose a novel UL-based RCA algorithm called Distance-Based Root Cause Analysis (DB-RCA). Extensive validation of the framework’s applicability and performance in the context of autonomous optical network security management is carried out using an experimental physical-layer security dataset, evaluating the benefits and drawbacks of the SL- and UL-based RCA techniques. Besides confirming that SL-based approaches can be trained to provide precise RCA output for known attack types, the study shows that the proposed UL-based RCA approach offers meaningful insights into the properties of anomalies caused by novel attack types, thus supporting the human security officers in advancing the physical-layer security diagnostics.</div>


Device-to-Device (D2D) communication is used for cellular networks. D2d communication is the direct communication from one mobile station to other mobile station, without the involvement of the base station. By using the device to device communication lesser delay is possible. By using d2d communication along with 5G network improves the bit rate. 5G network provides the communication with more data rate and lesser delay. Security and privacy are very important for communication. In this paper security and privacy requirements of device to device communication and physical layer privacy solutions are discussed.


2021 ◽  
Author(s):  
Carlos Natalino ◽  
Marco Schiano ◽  
Andrea Di Giglio ◽  
Marija Furdek

<div>The ongoing evolution of optical networks towards autonomous systems supporting high-performance services be-yond 5G requires advanced functionalities for automated security management. These functionalities need to support risk reduction, security diagnostics and incident remediation strategies. To cope with evolving security threat scenarios, security diagnostic approaches should be able to detect and identify the nature not only of existing attack techniques, but also those hitherto unknown or insufficiently represented. Machine Learning (ML)-based algorithms have been shown to perform well when identifying known attack types, but cannot guarantee precise identification of unknown attacks. This makes Root Cause Analysis (RCA) a crucial tool to enable timely attack response when human intervention is unavoidable.</div><div>We address these challenges by establishing an ML-based framework for security assessment and analyzing RCA alter-natives for physical-layer attacks. We first scrutinize different Network Management System (NMS) architectures and the corresponding ML-based security assessment functionalities. We then investigate the applicability of supervised and unsupervised learning (SL and UL) approaches for RCA and propose a novel UL-based RCA algorithm called Distance-Based Root Cause Analysis (DB-RCA). Extensive validation of the framework’s applicability and performance in the context of autonomous optical network security management is carried out using an experimental physical-layer security dataset, evaluating the benefits and drawbacks of the SL- and UL-based RCA techniques. Besides confirming that SL-based approaches can be trained to provide precise RCA output for known attack types, the study shows that the proposed UL-based RCA approach offers meaningful insights into the properties of anomalies caused by novel attack types, thus supporting the human security officers in advancing the physical-layer security diagnostics.</div>


2021 ◽  
Author(s):  
Carlos Natalino ◽  
Marco Schiano ◽  
Andrea Di Giglio ◽  
Marija Furdek

<div>The ongoing evolution of optical networks towards autonomous systems supporting high-performance services be-yond 5G requires advanced functionalities for automated security management. These functionalities need to support risk reduction, security diagnostics and incident remediation strategies. To cope with evolving security threat scenarios, security diagnostic approaches should be able to detect and identify the nature not only of existing attack techniques, but also those hitherto unknown or insufficiently represented. Machine Learning (ML)-based algorithms have been shown to perform well when identifying known attack types, but cannot guarantee precise identification of unknown attacks. This makes Root Cause Analysis (RCA) a crucial tool to enable timely attack response when human intervention is unavoidable.</div><div>We address these challenges by establishing an ML-based framework for security assessment and analyzing RCA alter-natives for physical-layer attacks. We first scrutinize different Network Management System (NMS) architectures and the corresponding ML-based security assessment functionalities. We then investigate the applicability of supervised and unsupervised learning (SL and UL) approaches for RCA and propose a novel UL-based RCA algorithm called Distance-Based Root Cause Analysis (DB-RCA). Extensive validation of the framework’s applicability and performance in the context of autonomous optical network security management is carried out using an experimental physical-layer security dataset, evaluating the benefits and drawbacks of the SL- and UL-based RCA techniques. Besides confirming that SL-based approaches can be trained to provide precise RCA output for known attack types, the study shows that the proposed UL-based RCA approach offers meaningful insights into the properties of anomalies caused by novel attack types, thus supporting the human security officers in advancing the physical-layer security diagnostics.</div>


Author(s):  
Matthieu Bloch ◽  
Joao Barros

Author(s):  
Shijie WANG ◽  
Yuanyuan GAO ◽  
Xiaochen LIU ◽  
Guangna ZHANG ◽  
Nan SHA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document