cognitive radio
Recently Published Documents





Paurav Goel ◽  
Avtar Singh ◽  
Ashok Goel

Underutilized radio frequencies are the chief apprehension in advance radio communication. The radio recourses are sparse and costly and their efficient allocation has become a challenge. Cognitive radio networks are the ray of hope. Cognitive radio networks use dynamic spectrum access technique to opportunistically retrieve and share the licensed spectrum. The licensed users are called primary users and the users that opportunistically access the licensed spectrum all called secondary users. The proposed system is a feedback system that work on demand and supply concept, in which secondary receivers senses the vacant spectrum and shares the information with the secondary transmitters. The secondary transmitters adjust their transmission parameters of transmit power and data rate in such a way that date rate is maximized. Two methods of spectrum access using frequency division multiple access (FDMA) and Time division multiple access (TDMA) are discussed. Interference temperature limit and maximum achievable capacity are the constraints that regulate the entire technique. The aim of the technique is to control the transmitter power according to the data requirements of each secondary user and optimizing the resources like bandwidth, transmit power using machine learning and feed forward back propagation deep neural networks making full use of the network capacity without hampering the operation of primary network.

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 129
Mingdong Xu ◽  
Zhendong Yin ◽  
Yanlong Zhao ◽  
Zhilu Wu

cognitive radio, as a key technology to improve the utilization of radio spectrum, acquired much attention. Moreover, spectrum sensing has an irreplaceable position in the field of cognitive radio and was widely studied. The convolutional neural networks (CNNs) and the gate recurrent unit (GRU) are complementary in their modelling capabilities. In this paper, we introduce a CNN-GRU network to obtain the local information for single-node spectrum sensing, in which CNN is used to extract spatial feature and GRU is used to extract the temporal feature. Then, the combination network receives the features extracted by the CNN-GRU network to achieve multifeatures combination and obtains the final cooperation result. The cooperative spectrum sensing scheme based on Multifeatures Combination Network enhances the sensing reliability by fusing the local information from different sensing nodes. To accommodate the detection of multiple types of signals, we generated 8 kinds of modulation types to train the model. Theoretical analysis and simulation results show that the cooperative spectrum sensing algorithm proposed in this paper improved detection performance with no prior knowledge about the information of primary user or channel state. Our proposed method achieved competitive performance under the condition of large dynamic signal-to-noise ratio.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 631
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Due to the capability of the effective usage of the radio frequency spectrum, a concept known as cognitive radio has undergone a broad exploitation in real implementations. Spectrum sensing as a core function of the cognitive radio enables secondary users to monitor the frequency band of primary users and its exploitation in periods of availability. In this work, the efficiency of spectrum sensing performed with the energy detection method realized through the square-law combining of the received signals at secondary users has been analyzed. Performance evaluation of the energy detection method was done for the wireless system in which signal transmission is based on Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing. Although such transmission brings different advantages to wireless communication systems, the impact of noise variations known as noise uncertainty and the inability of selecting an optimal signal level threshold for deciding upon the presence of the primary user signal can compromise the sensing precision of the energy detection method. Since the energy detection may be enhanced by dynamic detection threshold adjustments, this manuscript analyses the influence of detection threshold adjustments and noise uncertainty on the performance of the energy detection spectrum sensing method in single-cell cognitive radio systems. For the evaluation of an energy detection method based on the square-law combining technique, the mathematical expressions of the main performance parameters used for the assessment of spectrum sensing efficiency have been derived. The developed expressions were further assessed by executing the algorithm that enabled the simulation of the energy detection method based on the square-law combining technique in Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing cognitive radio systems. The obtained simulation results provide insights into how different levels of detection threshold adjustments and noise uncertainty affect the probability of detection of primary user signals. It is shown that higher signal-to-noise-ratios, the transmitting powers of primary user, the number of primary user transmitting and the secondary user receiving antennas, the number of sampling points and the false alarm probabilities improve detection probability. The presented analyses establish the basis for understanding the energy detection operation through the possibility of exploiting the different combinations of operating parameters which can contribute to the improvement of spectrum sensing efficiency of the energy detection method.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 451
Shahzad Latif ◽  
Suhail Akraam ◽  
Tehmina Karamat ◽  
Muhammad Attique Khan ◽  
Chadi Altrjman ◽  

The high data rates detail that internet-connected devices have been increasing exponentially. Cognitive radio (CR) is an auspicious technology used to address the resource shortage issue in wireless IoT networks. Resource optimization is considered a non-convex and nondeterministic polynomial (NP) complete problem within CR-based Internet of Things (IoT) networks (CR-IoT). Moreover, the combined optimization of conflicting objectives is a challenging issue in CR-IoT networks. In this paper, energy efficiency (EE) and spectral efficiency (SE) are considered as conflicting optimization objectives. This research work proposed a hybrid tabu search-based stimulated algorithm (HTSA) in order to achieve Pareto optimality between EE and SE. In addition, the fuzzy-based decision is employed to achieve better Pareto optimality. The performance of the proposed HTSA approach is analyzed using different resource allocation parameters and validated through simulation results.

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 375
Derek Kwaku Pobi Asiedu ◽  
Ji-Hoon Yun

This paper investigates the power resource optimization problem for a new cognitive radio framework with a symbiotic backscatter-aided full-duplex secondary link under imperfect interference cancellation and other hardware impairments. The problem is formulated using two approaches, namely, maximization of the sum rate and maximization of the primary link rate, subject to rate constraints on the secondary link, and the solution for each approach is derived. The problem of a half-duplex secondary link is also solved. Simulation results show that the sum rate and exploitation of the full-duplex capability of the secondary link are strongly affected by both the problem objective and hardware impairments.

Sign in / Sign up

Export Citation Format

Share Document