physical layer
Recently Published Documents





2022 ◽  
Vol 2022 ◽  
pp. 1-12
Hang Zhang ◽  
Fanglin Niu ◽  
Ling Yu ◽  
Si Zhang

In traditional wireless sensor networks, information transmission usually uses data encryption methods to prevent information from being stolen illegally. However, once the encryption methods are leaked, eavesdropping nodes can easily obtain information. LT codes are rateless codes; if it is attacked by random channel noise, the decoding process will change and the decoding overhead will also randomly change. When it is used for physical layer communication of wireless sensor networks, it ensures that the destination node recovers all the information without adding the key, while the eavesdropping node can only obtain part of the information to achieve wireless information security transmission. To reduce the intercept efficiency of eavesdropping nodes, a physical layer security (PLS) method of LT codes with double encoding matrix reorder (DEMR-LT codes) is proposed. This method performs two consecutive LT code concatenated encoding on the source symbol, and part of the encoding matrix is reordered according to the degree value of each column from large to small, which reduces the probability of eavesdropping nodes recovering the source information. Experimental results show that compared with other LT code PLS schemes, DEMR-LT codes only increase the decoding overhead by a small amount. However, it can effectively reduce the intercept efficiency of eavesdropping nodes and improve information transmission security.

2022 ◽  
Vol 12 (2) ◽  
pp. 641
Junsung Choi ◽  
Dongryul Park ◽  
Suil Kim ◽  
Seungyoung Ahn

Along with the development of electromagnetic weapons, Electronic Warfare (EW) has been rising as the future form of war. Especially in the area of wireless communications, high security defense systems such as Low Probability of Detection (LPD), Low Probability of Interception (LPI), and Low Probability of Exploitation (LPE) communication algorithms are being studied to prevent military force loss. One LPD, LPI, and LPE communication algorithm, physical-layer security, has been discussed and studied. We propose a noise signaling system, a type of physical-layer security, which modifies conventionally modulated I/Q data into a noise-like shape. To suggest the possibility of realistic implementation, we use Software-Defined Radio (SDR). Since there are certain hardware limitations, we present the limitations, requirements, and preferences of practical implementation of the noise signaling system. The proposed system uses ring-shaped signaling, and we present a ring-shaped signaling system algorithm, SDR implementation methodology, and performance evaluations of the system using the metrics of Bit Error Rate (BER) and Probability of Modulation Identification (PMI), which we obtain by using a Convolutional Neural Network (CNN) algorithm. We conclude that the ring-shaped signaling system can perform high LPI/LPE communication functioning because an eavesdropper cannot obtain the correct modulation scheme information. However, the performance can vary with the configurations of the I/Q data-modifying factors.

2022 ◽  
Vol 355 ◽  
pp. 02040
Jinxue Cui ◽  
Bin Han

The design and implementation of the MVB conformance test system is of great significance in both professional theory and practical application. Conformance test for MVB, mainly to determine whether the MVB equipment IUT is consistent with the MVB protocol standard requirements in the TCN standard. The conformance test of MVB equipment IUT covers most of the contents of the RTP real-time protocol such as the physical layer, link layer, network layer, transport layer and application layer. This subject will analyse and study the consistency test of the MVB physical layer.

Sign in / Sign up

Export Citation Format

Share Document