Stochastic Geometry Analysis of Energy Efficiency in Heterogeneous Network with Sleep Control

2013 ◽  
Vol 2 (6) ◽  
pp. 615-618 ◽  
Author(s):  
Jinlin Peng ◽  
Hao Tang ◽  
Peilin Hong ◽  
Kaiping Xue
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Mahmut Demirtaş ◽  
Alkan Soysal

In this paper, we introduce nonoverlay microcell/macrocell planning that is optimally designed for improving energy efficiency of the overall heterogeneous cellular network. We consider two deployment strategies. The first one is based on a fixed hexagonal grid and the second one is based on a stochastic geometry. In both of our models, microcells are placed in those areas where the received signal power levels of macrocell common pilot channels are below a certain threshold. Thus, interference between microcells and macrocells is minimized. As a result, addition of microcells increases the achieved number of bits per unit energy. Under such deployment assumptions, we investigate the effects of certain parameters on the energy efficiency. These parameters include the user traffic, the Intersite Distance (ISD), the size of microcells and the number of microcells per macrocell for the grid model, and macrocell density and microcell density for the stochastic model. The results of our performance analyses show that utilizing microcells in a sparse user scenario is worse for the energy efficiency whereas it significantly improves both energy and spectral efficiencies in a dense user scenario. Another interesting observation is that it is possible to choose an optimum number of microcells for a given macrocell density.


Author(s):  
Bartłomiej Błaszczyszyn ◽  
Martin Haenggi ◽  
Paul Keeler ◽  
Sayandev Mukherjee

2021 ◽  
Vol E104.B (1) ◽  
pp. 118-127
Author(s):  
Yuxiang FU ◽  
Koji YAMAMOTO ◽  
Yusuke KODA ◽  
Takayuki NISHIO ◽  
Masahiro MORIKURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document