directional antennas
Recently Published Documents


TOTAL DOCUMENTS

860
(FIVE YEARS 108)

H-INDEX

40
(FIVE YEARS 4)

Author(s):  
Andres Valencia Acuña ◽  
◽  
Brian Meneses Claudio ◽  
Alexi Delgado

In recent years being able to have access to the internet has become a tool not only to be able to communicate in the distance but it is a great tool to be able to feed knowledge, it is because of them that children have a great educational utility and after this pandemic in Peru it was necessary to close schools, to be able to give remote classes or virtual classes. To solve the problem, we propose to be able to design a network of radio links whereby means of a base station of emission and reception, with an antenna of sectorial type and directional antennas to be able to realize a Point – Multipoint link which will be able to manage the quality of signal by means of a routing with functions of control of speeds for each connection of each home. It was the result that the connections of the radio link at an average distance from the coverage that the network had the signal was better and that the connections that were very far or close to the coverage area had complications, but despite this the connections were sufficient to be able to maintain the virtual classes that is what was planned. It is recommended that for a better connection and complete coverage it would be to reinforce the broadcast base with more sectoral antennas in the network. Keywords- Radio link, Point - Multipoint, Router, Download speed, Upload speed.


2022 ◽  
Vol 5 (2) ◽  
pp. 59-65
Author(s):  
Shazia Abbasi ◽  
Khalil Khoumbati ◽  
Muhammad Memon ◽  
Shahzad Memon

Managing interference in the multi-radio networks is critical challenge; problem becomes even more serious in 2.4 GHz band due to minimal availability of orthogonal channels. This work attempts to propose a channel assignment scheme for interference zones of 2.4 GHz backhaul of Wireless Mesh Networks (WMN). The static nodes of Infrastructure based Backhaul employing directional antennas to connect static nodes, orthogonal channel zones introducing Interference are formatted with the selection of single tire direct hop and two tier directional hopes. The effort maintain the orthogonality of channels on system thus reduce the co-channel interference between inter flow and intra flow links. Group of non-overlapping channels of selected band are obtained by a mathematical procedure, interference is modeled by directed graph and Channel assignment is carried out with the help of greedy algorithms. Experimental analysis of the technical proposal is done by simulation through OPNET 14. Our framework can act as an imperative way to enhance the network performance resulting a leading improvement in system throughput and reduction in system delay


2021 ◽  
Vol 17 (4) ◽  
pp. 1-21
Author(s):  
Javier Schandy ◽  
Simon Olofsson ◽  
Nicolás Gammarano ◽  
Leonardo Steinfeld ◽  
Thiemo Voigt

The use of directional antennas for wireless communications brings several benefits, such as increased communication range and reduced interference. One example of directional antennas are electronically switched directional (ESD) antennas that can easily be integrated into Wireless Sensor Networks (WSNs) due to their small size and low cost. However, current literature questions the benefits of using ESD antennas in WSNs due to the increased likelihood of hidden terminals and increased power consumption. This is mainly because earlier studies have used directionality for transmissions but not for reception. In this article, we introduce novel cross-layer optimizations to fully utilize the benefits of using directional antennas. We modify the Medium Access Control (MAC) , routing, and neighbor discovery mechanisms to support directional communication. We focus on convergecast investigating a large number of different network topologies. Our experimental results, both in simulation and with real nodes, show when the traffic is dense, networks with directional antennas can significantly outperform networks with omnidirectional ones in terms of packet delivery rate, energy consumption, and energy per received packet.


2021 ◽  
pp. 173-182
Author(s):  
Parveen ◽  
Sushil Kumar ◽  
Rishipal Singh

Author(s):  
Е.А. Ищенко ◽  
Ю.Г. Пастернак ◽  
В.А. Пендюрин ◽  
С.М. Фёдоров

Для обеспечения радиосвязи применяются различные конструкции антенн, которые могут обладать всенаправленными или узконаправленными диаграммами направленности, при этом наибольшей защитой канала связи от помех и от перехвата обладают направленные антенны. Но их недостатком является то, что для обеспечения связи во всех направлениях требуется или установка группы антенн, или использование поворотных платформ, которые ухудшают показатели надежности системы, а также усложняют ее. Поэтому, как правило, для обеспечения связи применяют всенаправленные антенны, которые имеют диаграмму направленности в виде тороида. Недостаткaми таких антенн являются малый коэффициент направленного действия, а также прием большого числа шумов, что усложняет последующую обработку сигналов. Предлагается конструкция дипольной антенны, помещенной в активный метаматериал, с возможностью формирования луча путем коммутации слоев конструкции, что формирует динамически перестраиваемые рефлекторы. Получаемые в процессе функционирования системы диаграммы направленности обладают высокими значениями КНД, а также высокой помехозащищённостью и защитой от перехвата ввиду направленных свойств. Была получена конструкция антенны, помещенная в кубическую структуру активного метаматериала, с возможностью коммутации проводников с использованием pin-диодов или МЭМС-коммутаторов, что позволяет обеспечить быстрое переключение режимов работы устройства, формирование направленного луча и обеспечение помехозащищенной и защищенной от перехвата связи To ensure radio communication, various antenna designs are used, which can have omnidirectional or narrowly directional radiation patterns, while directional antennas have the greatest protection of the communication channel from interference and interception. However, their disadvantage is that to ensure communication in all directions, either the installation of a group of antennas or the use of turntables are required, which degrade the reliability of the system, as well as complicate it. Therefore, as a rule, to provide communication, omnidirectional antennas are used, which have a radiation pattern in the form of a toroid. The disadvantage of such antennas is, as a rule, a small directional coefficient, as well as the reception of a large number of noises, which complicates the subsequent signal processing. In this work, we propose a design of a dipole antenna placed in an active metamaterial with the possibility of forming a beam by switching the layers of the structure, which forms dynamically tunable reflectors. Directional patterns obtained in the course of system operation have high directivity values, as well as high noise immunity and protection against interception due to directional properties. As a result of the study, we obtained an antenna design, placed in a cubic structure of an active metamaterial with the possibility of switching conductors using pin diodes or MEMS switches, which allows for fast switching of device operating modes, formation of a directed beam and providing noise-immune and interception-proof communication


Author(s):  
Chia-Yu Lin ◽  
Fu-Ming Kang ◽  
Po-Min Hsu ◽  
Jen-Jee Chen ◽  
Yu-Chee Tseng

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5662
Author(s):  
Anabi Hilary Kelechi ◽  
Mohammed H. Alsharif ◽  
Damilare Abdulbasit Oluwole ◽  
Philip Achimugu ◽  
Osichinaka Ubadike ◽  
...  

Unmanned aerial vehicle (UAV) antenna tracking system is an electromechanical component designed to track and steer the signal beams from the ground control station (GCS) to the airborne platform for optimum signal alignment. In a tracking system, an antenna continuously tracks a moving target and records their position. A UAV tracking antenna system is susceptible to signal loss if omnidirectional antenna is deployed as the preferred design. Therefore, to achieve longer UAV distance communication, there is a need for directional high gain antenna. From design principle, directional antennas are known to focus their signal energy in a particular direction viewed from their radiation pattern which is concentrated in a particular azimuth direction. Unfortunately, a directional antenna is limited by angle, thus, it must always be directed to the target. The other limitation of a UAV mechanical beam steering system is that the system is expensive to maintain and with low reliability. To solve this problem, we are proposing the use of MIMO technology as a readily available technology for UAV beyond line of sight technology. Although UAV antenna tracking is domiciled in the mechanical beam steering arrangement, this study shows that this native technology could be usurped by MIMO beam forming.


2021 ◽  
Author(s):  
Saeideh Shad

Millimeter wave (mmWave) communication systems have attracted significant interest regarding supporting high data rate of Gigabit/s communications for the new generation of wireless communication networks. MmWave communication systems have frequency ranges in between 30 and 300 GHz wherein an enormous amount of unused bandwidth is available. Although the available bandwidth of mmWave frequencies is promising for high data rate communications, the propagation characteristics of mmWave frequencies are significantly different from microwave frequency band in terms of path loss, diffraction and blockage, and atmospheric absorption. In general, the overall losses of mmWave signals are significantly larger than that of microwave signals in point-to-point wireless communications. To compensate the high propagation losses, due to the limited output power that the current RF active components can deliver in millimeter waves, the use of directional and beam-steerable antennas become necessary in mmWave wireless systems. The use of directional antennas can effectively alleviate the signal interference in mmWave communications. High-gain directional antennas can be used at both the transmitting and receiving ends, resulting in a significantly enhanced Signal-to-Noise ratio (SNR) and improved data security, and can be used in long-range mmWave point-to-point communications. Moreover, directional antenna beams with limited spatial coverage need to be steered either electronically or mechanically to obtain a better substitute link for non-Line of Loss (LOS) communications. Therefore, this dissertation mainly focuses on antenna design for mmWave frequency band applications. High gain and beam-steerable antennas with the merits of low profile, high gain, high efficiency and low cost are studied to address the new challenges of high frequency band antennas. First, waveguide-based technology is employed to propose a new wideband high gain antenna for 60 GHz band applications. Then, for beam-steerable antenna applications to steer the antenna beam in a specific direction, different structures of cylindrical lens antennas are studied. First, a compact two-dimensional lens antenna is designed and proposed at 28 GHz, and then a possible design of a wideband beam-steerable lens antenna is discussed and presented. Finally, a fully metallic wideband metasurface-based lens antenna is explored. The antenna is realized based on an array of periodic unit-cells to reduce the loss of the dielectric part in the conventional lens antennas. This property is exploited to design wideband cost-effective fully metallic antenna at mmWave frequencies.


Sign in / Sign up

Export Citation Format

Share Document