Operational rate-distortion design for joint source-channel coding over noisy channels

Author(s):  
Jianfei Cai ◽  
Chang Wen Chen
2010 ◽  
Vol 56 (4) ◽  
pp. 351-355
Author(s):  
Marcin Rodziewicz

Joint Source-Channel Coding in Dictionary Methods of Lossless Data Compression Limitations on memory and resources of communications systems require powerful data compression methods. Decompression of compressed data stream is very sensitive to errors which arise during transmission over noisy channels, therefore error correction coding is also required. One of the solutions to this problem is the application of joint source and channel coding. This paper contains a description of methods of joint source-channel coding based on the popular data compression algorithms LZ'77 and LZSS. These methods are capable of introducing some error resiliency into compressed stream of data without degradation of the compression ratio. We analyze joint source and channel coding algorithms based on these compression methods and present their novel extensions. We also present some simulation results showing usefulness and achievable quality of the analyzed algorithms.


2008 ◽  
Vol 2008 ◽  
pp. 1-18 ◽  
Author(s):  
O. Y. Bursalioglu ◽  
M. Fresia ◽  
G. Caire ◽  
H. V. Poor

The straightforward application of Shannon's separation principle may entail a significant suboptimality in practical systems with limited coding delay and complexity. This is particularly evident when the lossy source code is based on entropy-coded quantization. In fact, it is well known that entropy coding is not robust to residual channel errors. In this paper, a joint source-channel coding scheme is advocated that combines the advantages and simplicity of entropy-coded quantization with the robustness of linear codes. The idea is to combine entropy coding and channel coding into a single linear encoding stage. If the channel is symmetric, the scheme can asymptotically achieve the optimal rate-distortion limit. However, its advantages are more clearly evident under finite coding delay and complexity. The sequence of quantization indices is decomposed into bitplanes, and each bitplane is independently mapped onto a sequence of channel coded symbols. The coding rate of each bitplane is chosen according to the bitplane conditional entropy rate. The use of systematic raptor encoders is proposed, in order to obtain a continuum of coding rates with a single basic encoding algorithm. Simulations show that the proposed scheme can outperform the separated baseline scheme for finite coding length and comparable complexity and, as expected, it is much more robust to channel errors in the case of channel capacity mismatch.


Sign in / Sign up

Export Citation Format

Share Document