entropy coding
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 7 (7) ◽  
pp. 117
Author(s):  
Yasir Iqbal ◽  
Oh-Jin Kwon

The JPEG format, consisting of a set of image compression techniques, is one of the most commonly used image coding standards for both lossy and lossless image encoding. In this format, various techniques are used to improve image transmission and storage. In the final step of lossy image coding, JPEG uses either arithmetic or Huffman entropy coding modes to further compress data processed by lossy compression. Both modes encode all the 8 × 8 DCT blocks without filtering empty ones. An end-of-block marker is coded for empty blocks, and these empty blocks cause an unnecessary increase in file size when they are stored with the rest of the data. In this paper, we propose a modified version of the JPEG entropy coding. In the proposed version, instead of storing an end-of-block code for empty blocks with the rest of the data, we store their location in a separate buffer and then compress the buffer with an efficient lossless method to achieve a higher compression ratio. The size of the additional buffer, which keeps the information of location for the empty and non-empty blocks, was considered during the calculation of bits per pixel for the test images. In image compression, peak signal-to-noise ratio versus bits per pixel has been a major measure for evaluating the coding performance. Experimental results indicate that the proposed modified algorithm achieves lower bits per pixel while retaining quality.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 836
Author(s):  
Yibiao Rong ◽  
Xia Zhang ◽  
Jianyu Lin

In our previous work, by combining the Hilbert scan with the symbol grouping method, efficient run-length-based entropy coding was developed, and high-efficiency image compression algorithms based on the entropy coding were obtained. However, the 2-D Hilbert curves, which are a critical part of the above-mentioned entropy coding, are defined on squares with the side length being the powers of 2, i.e., 2n, while a subband is normally a rectangle of arbitrary sizes. It is not straightforward to modify the Hilbert curve from squares of side lengths of 2n to an arbitrary rectangle. In this short article, we provide the details of constructing the modified 2-D Hilbert curve of arbitrary rectangle sizes. Furthermore, we extend the method from a 2-D rectangle to a 3-D cuboid. The 3-D modified Hilbert curves are used in a novel 3-D transform video compression algorithm that employs the run-length-based entropy coding. Additionally, the modified 2-D and 3-D Hilbert curves introduced in this short article could be useful for some unknown applications in the future.


2021 ◽  
Author(s):  
Michael Lettrich ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document