NERON: A Route Optimization Scheme for Nested Mobile Networks

Author(s):  
Faqir Zarrar Yousaf ◽  
Alain Tigyo ◽  
Christian Wietfeld
Author(s):  
Shayma Senan ◽  
Aisha Hassan A. Hashim

<p>As a demand of accessing Internet is increasing dramatically, host mobility becomes insufficient to fulfill these requirements. However, to overcome this limitation, network mobility has been introduced. One of its implementation is NEMO Basic Support protocol which is proposed by Internet Engineering Task Force (IETF). In NEMO, one or more Mobile Router(s) manages the mobility of the network in a way that its nodes would be unaware of their movement. Although, it provides several advantages, it lacks many drawbacks in term of route optimization especially when multiple nested mobile networks are formed. This paper presents a new hierarchical route optimization scheme for nested mobile networks using Advanced Binding Update List (BUL+), which is called HRO-B+. From performance evaluation, it shows that this scheme performs better in terms of throughp<em>ut, delay, response time, and traffic, and achieves optimal routing.</em></p>


Author(s):  
Badiea Abdulkarem Mohammed ◽  
Tat-Chee Wan

To fulfill the need for on-the-move and uninterrupted internet connectivity in Mobile Networks, IETF NEMO working group was created to extend basic end-host mobility support in Mobile IPv6 (MIPv6) protocol. NEMO Basic Support Protocol (NEMO) has been standardized by this group to provide the network mobility support. However, the handover latency in NEMO is high and, the nested tunnels’ problem in the nested NEMO networks is not considered. Many schemes have been proposed to solve these problems by optimizing the handover signaling procedure, and by proposing routing optimization scheme for NEMO. Better optimized signaling procedure is proposed in this paper, and a proposed Routing Optimization scheme as a solution for the lack of the nested tunnels’ problem is proposed as well. Analytical results highlight the importance of the proposed scheme comparing to others are provided, revealing that the proposed scheme has the lowest handover latency and disruption time.


Sign in / Sign up

Export Citation Format

Share Document