Tri-Station Location System in 2D Surface Based on Time Difference Self Measurement of Main Station

Author(s):  
Yu Tao
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gang Li ◽  
Min Zhou ◽  
Hongwen Tang ◽  
Hongbin Chen

The low-orbit dual-satellite passive location system provides a cost-efficient and easy implementation platform, by which positions of unknown emitters on the Earth can be determined through measuring both the time and the frequency differences by two low-orbit satellites in space. However, in reality, this dual-satellite location system has low positioning accuracy because of the existence of systematic errors. In this paper, in order to address the problem of low positioning accuracy in low-orbit dual-satellite systems, a virtualization approach, consisting of the establishment of the virtual reference station and virtual frequency conversion, is proposed to correct systematic errors in the system. Specifically, we first analyze the coming source of systematic errors in the dual-satellite location system, and then, a virtual reference station and virtual frequency are constructed to correct errors in the measured time difference of arrival and the frequency difference of arrival, respectively. Simulation results show that systematic errors caused by the measured time difference of arrival can be significantly reduced, and the correction efficiency, defined as a ratio between remaining errors after implementing the proposed method over uncorrected ones, for the measured frequency difference of arrival, largely relies on both the virtual frequency and the transmission frequency of reference stations.


Sign in / Sign up

Export Citation Format

Share Document