emitter location
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yujie Wang ◽  
Weibing Kuang ◽  
Mingtao Shang ◽  
Zhen-Li Huang

AbstractMulti-color super-resolution localization microscopy (SRLM) provides great opportunities for studying the structural and functional details of biological samples. However, current multi-color SRLM methods either suffer from medium to high crosstalk, or require a dedicated optical system and a complicated image analysis procedure. To address these problems, here we propose a completely different method to realize multi-color SRLM. This method is built upon a customized RGBW camera with a repeated pattern of filtered (Red, Green, Blue and Near-infrared) and unfiltered (White) pixels. With a new insight that RGBW camera is advantageous for color recognition instead of color reproduction, we developed a joint encoding scheme of emitter location and color. By combing this RGBW camera with the joint encoding scheme and a simple optical set-up, we demonstrated two-color SRLM with ∼20 nm resolution and < 2% crosstalk (which is comparable to the best reported values). This study significantly reduces the complexity of two-color SRLM (and potentially multi-color SRLM), and thus offers good opportunities for general biomedical research laboratories to use multi-color SRLM, which is currently mastered only by well-trained researchers.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3946
Author(s):  
Mohamed Khalaf-Allah

Passive ground emitter geolocation techniques are essential to electronic warfare systems, as they provide threat warnings in hostile environments, while ensuring the electronic silence of the mission platform. Geolocation of enemy emitters indicates the position of and type of adversary troops, and allows for the use of guided munition against enemy targets. Three-dimensional geolocation solutions based on least squares and particle filter estimation, using only azimuth and elevation measurements, were considered. Three batch-processing and one instantaneous solution algorithms, i.e., using a single pulse or a single observation point, were developed and investigated. The performance of the proposed solutions was demonstrated by simulations. Results showed that the batch-processing solutions achieved acceptable accuracies with a sufficient number of observation points. The performance degraded with fewer observation points. The instantaneous geolocation solution improved performance with increasing observation points, i.e., working in the sequential mode, and therefore could approach the accuracy of the batch-processing solutions.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2097-2105
Author(s):  
Xiaozhuo Qi ◽  
Tsz Wing Lo ◽  
Di Liu ◽  
Lantian Feng ◽  
Yang Chen ◽  
...  

AbstractPlasmonic nanocavities comprised of metal film-coupled nanoparticles have emerged as a versatile nanophotonic platform benefiting from their ultrasmall mode volume and large Purcell factors. In the weak-coupling regime, the particle-film gap thickness affects the photoluminescence (PL) of quantum emitters sandwiched therein. Here, we investigated the Purcell effect-enhanced PL of monolayer MoS2 inserted in the gap of a gold nanoparticle (AuNP)–alumina (Al2O3)–gold film (Au Film) structure. Under confocal illumination by a 532 nm CW laser, we observed a 7-fold PL peak intensity enhancement for the cavity-sandwiched MoS2 at an optimal Al2O3 thickness of 5 nm, corresponding to a local PL enhancement of ∼350 by normalizing the actual illumination area to the cavity’s effective near-field enhancement area. Full-wave simulations reveal a counterintuitive fact that radiation enhancement comes from the non-central area of the cavity rather than the cavity center. By scanning an electric dipole across the nanocavity, we obtained an average radiation enhancement factor of about 65 for an Al2O3 spacer thickness of 4 nm, agreeing well with the experimental thickness and indicating further PL enhancement optimization. Our results indicate the importance of configuration optimization, emitter location and excitation condition when using such plasmonic nanocavities to modulate the radiation properties of quantum emitters.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2575
Author(s):  
Jan M. Kelner ◽  
Cezary Ziółkowski

This paper focused on assessing the effectiveness of the signal Doppler frequency (SDF) method to locate a mobile emitter using a swarm of unmanned aerial vehicles (UAVs). Based on simulation results, we showed the impact of various factors such as the number of UAVs, the movement parameters of the emitter and the sensors on location effectiveness. The study results also showed the dependence of the accuracy and continuity of the emitter coordinate estimation on the type of propagation environment, which was determined by line-of-sight (LOS) or non-LOS (NLOS) conditions. The applied research methodology allowed the selection of parameters of the analyzed location system that would minimize the error and maximize the monitoring time of the emitter position.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 66598-66608
Author(s):  
Wanchun Li ◽  
Li Wang ◽  
Tianliu Yang ◽  
Weiqin Zou ◽  
Xiaoyan Peng ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ji Woong Paik ◽  
Joon-Ho Lee

Closed-form expression of three-dimensional emitter location estimation using azimuth and elevation measurements at multiple locations is presented in this paper. The three-dimensional location estimate is obtained from three-dimensional sensor locations and the azimuth and elevation measurements at each sensor location. Since the formulation is not iterative, it is not computationally intensive and does not need initial location estimate. Numerical results are presented to show the validity of the proposed scheme.


Author(s):  
Craig S. Agate ◽  
Matthew Varble ◽  
Kenan O. Ezal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document