scholarly journals Differential resistance and acclimation of two coral species to chronic nutrient enrichment reflect life‐history traits

2021 ◽  
Author(s):  
Michael D. Fox ◽  
Craig E. Nelson ◽  
Thomas A. Oliver ◽  
Zachary A. Quinlan ◽  
Kristina Remple ◽  
...  
2017 ◽  
Vol 31 (5) ◽  
pp. 1122-1134 ◽  
Author(s):  
Iacopo Bertocci ◽  
Jorge A. Domínguez Godino ◽  
Cristiano Freitas ◽  
Monica Incera ◽  
Ana Bio ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242847
Author(s):  
Dexter W. dela Cruz ◽  
Peter L. Harrison

The escalating rate at which coral communities are declining globally requires urgent intervention and new approaches to reef management to reduce and halt further coral loss. For reef systems with limited natural larval supply, the introduction of large numbers of competent coral larvae directly to natural reef substrata provides a potentially useful approach to replenish adult coral populations. While few experiments have tested this approach, only one experiment has demonstrated its long-term success to date. Given the differences in life-history traits among corals, and different sensitivities of larvae to abiotic and biotic factors, coupled with the dynamic nature of post-settlement survivorship and recruitment processes, trials of the larval enhancement technique with larvae of different coral species are needed to test the broader applicability and viability of this approach. Accordingly, in this paper we examine the applicability of the larval enhancement technique to restore a population of Acropora loripes in the Bolinao-Anda Reef Complex, Pangasinan, northwestern Philippines. Larvae were cultured ex situ following spawning of collected A. loripes colonies in June 2014. Competent larvae were transported to degraded reef areas and approximately 300,000 larvae were introduced in each of three 6 × 4 m plots directly on the reef. Fine mesh enclosures retained the larvae inside each treatment plot for five days. Three adjacent 6 × 4 m plots that served as controls were also covered with mesh enclosures, but no larvae were introduced. Each plot contained ten 10 × 10 cm conditioned settlement tiles cut from dead tabulate Acropora that were used to quantify initial larval settlement. After allowing larval settlement for five days, mean settlement on tiles from the larval enhancement plots that were monitored under stereomicroscopes was significantly higher (27.8 ± 6.7 spat per tile) than in control plots, in which not a single recruit was recorded. Post-settlement survivorship and growth of spat and coral recruits on tiles and reef substrata inside the experimental plots were monitored periodically for 35 months. After 35 months, the mean size of each of the remaining 47 A. loripes coral colonies surviving on the reef substrata was 438.1 ± 5.4 cm3, with a mean diameter of 7.9 ± 0.6 cm. The average production cost for each of the surviving A. loripes colonies at 35 months was USD 35.20. These colonies are expected to spawn and contribute to the natural larval pool when they become reproductively mature, thereby enhancing natural coral recovery in the area. This study demonstrates that mass coral larval enhancement can be successfully used for restoring populations of coral species with different life-history traits, and the techniques can rapidly increase larval recruitment rates on degraded reef areas, hence catalysing the regeneration of declining coral populations.


2018 ◽  
Vol 13 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Hui Wei ◽  
Ratcha Chaichana ◽  
Fei Liu ◽  
Du Luo ◽  
Yu Qian ◽  
...  

2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


Sign in / Sign up

Export Citation Format

Share Document