caenorhabditis elegans
Recently Published Documents


TOTAL DOCUMENTS

12017
(FIVE YEARS 2315)

H-INDEX

213
(FIVE YEARS 25)

2022 ◽  
Vol 89 ◽  
pp. 104933
Author(s):  
Yali Wang ◽  
Yidan Sun ◽  
Xingguo Wang ◽  
Yue Wang ◽  
Langxing Liao ◽  
...  

2022 ◽  
Vol 18 (1) ◽  
pp. e1009755
Author(s):  
Xiangyu Kuang ◽  
Guoye Guan ◽  
Ming-Kin Wong ◽  
Lu-Yan Chan ◽  
Zhongying Zhao ◽  
...  

Morphogenesis is a precise and robust dynamic process during metazoan embryogenesis, consisting of both cell proliferation and cell migration. Despite the fact that much is known about specific regulations at molecular level, how cell proliferation and migration together drive the morphogenesis at cellular and organismic levels is not well understood. Using Caenorhabditis elegans as the model animal, we present a phase field model to compute early embryonic morphogenesis within a confined eggshell. With physical information about cell division obtained from three-dimensional time-lapse cellular imaging experiments, the model can precisely reproduce the early morphogenesis process as seen in vivo, including time evolution of location and morphology of each cell. Furthermore, the model can be used to reveal key cell-cell attractions critical to the development of C. elegans embryo. Our work demonstrates how genetic programming and physical forces collaborate to drive morphogenesis and provides a predictive model to decipher the underlying mechanism.


2022 ◽  
Vol 119 (3) ◽  
pp. e2106974119
Author(s):  
Shingo Hiroki ◽  
Yuichi Iino

The nematode Caenorhabditis elegans learns the concentration of NaCl and moves toward the previously experienced concentration. In this behavior, the history of NaCl concentration change is reflected in the level of diacylglycerol and the activity of protein kinase C, PKC-1, in the gustatory sensory neuron ASER and determines the direction of migration. Here, through a genetic screen, we found that the activation of Gq protein compensates for the behavioral defect of the loss-of-function mutant of pkc-1. We found that Gq activation results in hyperproduction of diacylglycerol in ASER sensory neuron, which leads to recruitment of TPA-1, an nPKC isotype closely related to PKC-1. Unlike the pkc-1 mutants, loss of tpa-1 did not obviously affect migration directions in the conventional learning assay. This difference was suggested to be due to cooperative functions of the C1 and C2-like domains of the nPKC isotypes. Furthermore, we investigated how the compensatory capability of tpa-1 contributes to learning and found that learning was less robust in the context of cognitive decline or environmental perturbation in tpa-1 mutants. These results highlight how two nPKC isotypes contribute to the learning system.


BMC Nutrition ◽  
2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Samantha Hughes ◽  
Nikki Kolsters ◽  
David van de Klashorst ◽  
Emanuel Kreuter ◽  
Karin Berger Büter

Abstract Background Members of the Rosaceae, Solanaceae and Zingiberaceae families which include fruits such as cherries, tomatoes and ginger are known to have health promoting effects. There is growing interest in consuming these “functional foods” as a means to increase health and healthy ageing. However, many studies explore the effect of these foods in isolation, not as a blend of multiple functional foods. Methods In this study, an extract containing the dried berries, fruits, and roots of members of these families was prepared, which we called Bioact®180. The nematode Caenorhabditis elegans was used to evaluate the effects of Bioact®180 on lifespan and health endpoints, including muscle and mitochondria structure and locomotion. Results Exposure to the 1000 µg/mL of Bioact®180 extract, containing 4% total phenols, were healthier, as observed by an increase in mean lifespan with and small but significant increase in maximal lifespan. Nematodes exposed to Bioact®180 displayed better mobility in mid-life stages as well as enhanced mitochondrial morphology, which was more comparable to younger animals, suggesting that these worms are protected to some degree from sarcopenia. Conclusions Together, our findings reveal that Bioact®180, a blend of fruits and roots from Rosaceae, Solanaceae and Zingiberaceae family members has anti-aging effects. Bioact®180 promotes health and lifespan extension in C. elegans, corresponding to functional improvements in mobility.


2022 ◽  
Vol 8 ◽  
Author(s):  
Haitao Zhou ◽  
Shanshan Ding ◽  
Chuanxin Sun ◽  
Jiahui Fu ◽  
Dong Yang ◽  
...  

Lycium barbarum berry (Ningxia Gouqi, Fructus lycii, goji berry, or wolfberry), as a traditional Chinese herb, was recorded beneficial for longevity in traditional Chinese medical scriptures and currently is a natural dietary supplement worldwide. However, under modern experimental conditions, the longevity effect of L. barbarum berry and the underlying mechanisms have been less studied. Here, we reported that total water extracts of L. barbarum berry (LBE), which contains 22% polysaccharides and other components, such as anthocyanins, extended the lifespan of Caenorhabditis elegans without side effects on worm fertility and pharyngeal pumping. Interestingly, we found that the lifespan extension effect was more prominent in worms with shorter mean lifespan as compared to those with longer mean lifespan. Furthermore, we showed that the lifespan extension effect of LBE depended on deacetylase sir-2.1. Remarkably, LBE rescued heat shock transcription factor-1 (hsf-1) deficiency in wild-type worms with different mean lifespans, and this effect also depended on sir-2.1. In addition, we found that LBE extended lifespan and alleviated toxic protein aggregation in neurodegenerative worms with hsf-1 deficiency. Our study suggested that LBE may be a potential antiaging natural dietary supplement especially to individuals with malnutrition or chronic diseases and a potential therapeutic agent for neurodegenerative diseases characterized by hsf-1 deficiency.


mBio ◽  
2022 ◽  
Author(s):  
Elena K. Gaidamakova ◽  
Ajay Sharma ◽  
Vera Y. Matrosova ◽  
Olga Grichenko ◽  
Robert P. Volpe ◽  
...  

The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O 2 •− ) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans .


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Masahiro Tomioka ◽  
Moon Sun Jang ◽  
Yuichi Iino

AbstractPreviously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c–Akt signaling promotes high-salt avoidance via a decrease in PLCβ activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Qiuhong Niu ◽  
Suyao Liu ◽  
Mingshen Yin ◽  
Shengwei Lei ◽  
Fabio Rezzonico ◽  
...  

Symbiotic microorganisms in the intestinal tract can influence the general fitness of their hosts and contribute to protecting them against invading pathogens. In this study, we obtained isolate Phytobacter diazotrophicus SCO41 from the gut of free-living nematode Caenorhabditis elegans that displayed strong colonization-resistance against invading biocontrol bacterium Bacillus nematocida B16. The colonization-resistance phenotype was found to be mediated by a 37-kDa extracellular protein that was identified as flagellin (FliC). With the help of genome information, the fliC gene was cloned and heterologously expressed in E. coli. It could be shown that the B. nematocida B16 grows in chains rather than in planktonic form in the presence of FliC. Scanning Electronic Microscopy results showed that protein FliC-treated B16 bacterial cells are thinner and longer than normal cells. Localization experiments confirmed that the protein FliC is localized in both the cytoplasm and the cell membrane of B16 strain, in the latter especially at the position of cell division. ZDOCK analysis showed that FliC could bind with serine/threonine protein kinase, membrane protein insertase YidC and redox membrane protein CydB. It was inferred that FliC interferes with cell division of B. nematocidal B16, therefore inhibiting its colonization of C. elegans intestines in vivo. The isolation of P. diazotrophicus as part of the gut microbiome of C. elegans not only provides interesting insights about the lifestyle of this nitrogen-fixing bacterium, but also reveals how the composition of the natural gut microbiota of nematodes can affect biological control efforts by protecting the host from its natural enemies.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Vladimir Lažetić ◽  
Fengting Wu ◽  
Lianne B. Cohen ◽  
Kirthi C. Reddy ◽  
Ya-Ting Chang ◽  
...  

AbstractDefense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts; specifically, the transcription factors that induce defense against intracellular intestinal infection in the model nematode Caenorhabditis elegans remain understudied. Two different types of intracellular pathogens that naturally infect the C. elegans intestine are the Orsay virus, which is an RNA virus, and microsporidia, which comprise a phylum of fungal pathogens. Despite their molecular differences, these pathogens induce a common host transcriptional response called the intracellular pathogen response (IPR). Here we show that zip-1 is an IPR regulator that functions downstream of all known IPR-activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor, and we show that zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is at least partially required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for triggers of the IPR, and that this transcription factor has a protective function against intracellular pathogen infection in C. elegans.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Laura Mena ◽  
Muriel Billamboz ◽  
Rogatien Charlet ◽  
Bérangère Desprès ◽  
Boualem Sendid ◽  
...  

Candidiasis, caused by the opportunistic yeast Candida albicans, is the most common fungal infection today. Resistance of C. albicans to current antifungal drugs has emerged over the past decade leading to the need for novel antifungal agents. Our aim was to select new antifungal compounds by library-screening methods and to assess their antifungal effects against C. albicans. After screening 90 potential antifungal compounds from JUNIA, a chemical library, two compounds, 1-(4-chlorophenyl)-4-((4-chlorophenyl)amino)-3,6-dimethylpyridin-2(1H)-one (PYR) and (Z)-N-(2-(4,6-dimethoxy-1,3,5-triazin-2-yl)vinyl)-4-methoxyaniline (TRI), were identified as having potential antifungal activity. Treatment with PYR and TRI resulted in a significant reduction of C. albicans bioluminescence as well as the number of fungal colonies, indicating rapid fungicidal activity. These two compounds were also effective against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. PYR and TRI had an inhibitory effect on Candida biofilm formation and reduced the thickness of the mannan cell wall. In a Caenorhabditis elegans infection model, PYR and TRI decreased the mortality of nematodes infected with C. albicans and enhanced the expression of antimicrobial genes that promote C. albicans elimination. Overall, PYR and TRI showed antifungal properties against C. albicans by exerting fungicidal activities and enhancing the antimicrobial gene expression of Caenorhabditis elegans.


Sign in / Sign up

Export Citation Format

Share Document