Neoarchaean-Palaeoproterozoic Mafic Dyke Swarms from the Singhbhum Granite Complex, Singhbhum Craton, Eastern India: Implications for Identification of Large Igneous Provinces and Their Possible Continuation on Other Formerly Adjacent Crustal Blocks

2016 ◽  
Vol 90 (s1) ◽  
pp. 17-18 ◽  
Author(s):  
Rajesh K. Srivastava ◽  
Ulf Söderlund ◽  
Richard E. Ernst ◽  
Sisir K. Mondal ◽  
Amiya K. Samal
2021 ◽  
pp. SP518-2021-46
Author(s):  
Arnab Dey ◽  
Sisir K. Mondal

AbstractDolerite dyke swarms are widespread within the Singhbhum Craton (eastern India) that emplaced from the Neoarchean to Paleoproterozoic era just after the stabilization of crust before c. 3 Ga. These dyke swarms are oriented in NE - SW to NNE - SSW, NW - SE to WNW - ESE, E - W, and N - S directions. The WNW - ESE trending c. 1.77 Ga Pipilia dyke swarm is sampled from the Satkosia area of the Orissa state. The dyke shows a noticeable disparity in terms of the modal proportion and grain size of pyroxenes, plagioclase, Fe-Ti-oxide minerals and texture across the trend. At places the primary silicates are altered to secondary hydrated mineral assemblages of amphibole, chlorite and sericite. Primary silicates are clinopyroxene (augite: Mg# = 65.7 - 82.6; En37-48Fs11-17Wo36-41), orthopyroxene (clinoenstatite: Mg# = 68.5 − 78; En63-70Fs20-29Wo4-5), plagioclase (An11-39Ab44-82Or1-7) and Fe-Ti oxides are titanomagnetite (FeO = 34.38 − 39.50 wt%, Fe2O3 = 48.26 − 56.21 wt%, TiO2 = 5.05 − 9.60 wt%) and ilmenite (FeO = 40.75 − 43.79 wt%, Fe2O3 = 3.54 − 10.03 wt%, TiO2 = 47.82 − 50.87 wt%). Application of two-pyroxene thermometry yields an equilibration temperature range of 1065oC to 978oC, and coexisting titanomagnetite-ilmenite pairs reveal 731.39oC to 573.37oC at the oxygen fugacity (fO2) condition NNO+0.3 to FMQ-1.03. The dyke contains disseminated sulfides at the interstices of Fe-Ti-oxides, and silicates. Major sulfide minerals are pyrite, chalcopyrite, and vaesite; Pyrite-vaesite assemblages occur in association with secondary silicate minerals. Pyrite grains contain variable concentration of Co = 0.01 − 5.70 wt% and Ni = 0.02 − 1.95 wt%. Coexisting vaesite contains Co = 2.42 − 10.44 wt%, Ni = 26.40 − 47.88 wt%, and Fe = 7.32 − 26.55 wt%. Texture, sulfide-silicate assemblage, and presence of low metal/S sulfides such as the pyrite-vaesite assemblage indicate primary Fe-Ni- sulfides (pyrrhotite-pentlandite) that segregated from immiscible sulfide liquid at high temperature is modified by late magmatic/hydrothermal fluid activities. Numerous sulfide-bearing deposits hosted in ultramafic-mafic intrusions of Paleoproterozoic age have been recorded globally and the occurrence of Fe-Ni-sulfides in the c. 1.77 Ga Pipilia dyke swarm in the Singhbhum Craton enhances the exploration potential of this craton in eastern India.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5643989


Sign in / Sign up

Export Citation Format

Share Document